Hybrid feature extraction technique for automatic classification of COVID-19 chest CT images

支持向量机 人工智能 特征提取 模式识别(心理学) 局部二进制模式 计算机科学 定向梯度直方图 直方图 分类器(UML) 粒子群优化 特征(语言学) 2019年冠状病毒病(COVID-19) 医学 图像(数学) 病理 机器学习 疾病 传染病(医学专业) 哲学 语言学
作者
Shaowei Wang,Qizhi Fu,Wenna Chen,Jincan Zhang,Ganqin Du,Hongwei Jiang,Jinghua Li,Xin Zhao
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Informa]
卷期号:11 (7): 2627-2636
标识
DOI:10.1080/21681163.2023.2250861
摘要

ABSTRACTCOVID-19 has seriously affected normal life as well as public safety. It is extremely transmissible and has now infected millions of people worldwide. To obtain more image features of the lungs, Computed Tomography (CT) scans are widely used. However, manual examination of CT images for abnormal areas of COVID-19 disease can be time-consuming, and it is highly subjective to determine whether they are infected. To rapidly screen patients, Machine Learning (ML) can be used to determine whether patients have the disease. In this paper, a hybrid extraction technique is used to extract feature vectors from CT images, which is a mixture of a histogram of orientation gradients (HOG) extraction technique and a local binary pattern (LBP) extraction technique. In this experiment, 960 NON-COVID-19 and 960 COVID-19 were adopted to train the model, and 240 NON-COVID-19 and 240 COVID-19 were used to test the model. And the CT images were scaled to a uniform size. After obtaining the feature vectors using HOG and LBP feature extraction methods, The CT images were classified using a Support Vector Machine (SVM) classifier optimised by Particle Swarm Optimisation (PSO). In the performance evaluation of the presented classification model, the combination of the HOG feature extraction technique and the LBP feature extraction technique resulted in a substantial improvement in the classification effectiveness of the SVM. HOG_LBP PSO SVM improved Accuracy to 97.5%, Precision to 97.75%, Recall to 97.27%, Specificity to 97.25%, F1_score to 97.50%, and Mcc to 95.01%.KEYWORDS: COVID-19HOGLBPHOG_LBP SVM AcknowledgementsThis work was supported by the National Natural Science Foundation of China (No. 31800836), China Postdoctoral Science Foundation (No. 2020M682285), Medical and Health Research Project in Luoyang (No. 2001027A), and Construction Project of Improving Medical Service Capacity of Provincial Medical Institutions in Henan Province (No. 2017-51). Project of Luoyang Science and Technology Bureau (2020YZ23).We acknowledge the support of these foundations. We would like to thank the Soares research group for providing the public available SARS-CoV-2 CT scan dataset [20].Disclosure statementNo potential conflict of interest was reported by the author(s).Authors' contributionsShaowei Wang, Qizhi Fu, and Wenna Chen contributed equally to this work. Shaowei Wang, Wenna Chen, Qizhi Fu, Hongwei Jiang and Jincan Zhang conceptualised and designed the study. Qizhi Fu and Jincan Zhang provided the administrative support. Ganqin Du, Qizhi Fu, Jinghua Li and Xin Zhao provided the study materials. Jinghua Li, Xin Zhao collected and assembled the data. Shaowei Wang, Wenna Chen performed the data analysis and interpretation. Shaowei Wang, Wenna Chen, Qizhi Fu and Jincan Zhang wrote the manuscript. All authors approved the final manuscript.Data availability statementData used to support the findings of this study are available online at https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset, and further inquiries can be directed to the corresponding author.Ethical approvalThis article uses the CT images, which were made publicly available by a research group as mentioned in 'Method'. Therefore, the authors of this study were not involved directly with human participants or animals.Additional informationFundingThe work was supported by the China Postdoctoral Science Foundation [2020M682285]; National Natural Science Foundation of China [31800836]; Medical and Health Research Project in Luoyang [2001027A]; Construction Project of Improving Medical Service Capacity of Provincial Medical Institutions in Henan Province [2017-51]; Project of Luoyang Science and Technology Bureau [2020YZ23].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助hu采纳,获得10
刚刚
刚刚
link171完成签到,获得积分10
1秒前
爆米花应助GEeZiii采纳,获得10
1秒前
刘笨笨发布了新的文献求助10
1秒前
2秒前
2秒前
安静发布了新的文献求助10
3秒前
3秒前
5秒前
耍酷幻灵完成签到,获得积分10
5秒前
大大怪完成签到,获得积分10
6秒前
7秒前
派大星发布了新的文献求助20
7秒前
qingzhou发布了新的文献求助10
9秒前
小跳蚤发布了新的文献求助10
10秒前
12秒前
行大运完成签到,获得积分10
12秒前
12秒前
hu发布了新的文献求助10
13秒前
13秒前
解洙发布了新的文献求助10
15秒前
19秒前
21秒前
英俊的铭应助琢钰采纳,获得10
22秒前
HEIKU应助阿菜采纳,获得20
23秒前
23秒前
keroro完成签到,获得积分10
24秒前
Quenchingstar发布了新的文献求助10
24秒前
超级笑南完成签到,获得积分10
25秒前
25秒前
zzx完成签到 ,获得积分10
26秒前
同一光源发布了新的文献求助10
26秒前
honeyYU完成签到,获得积分20
28秒前
28秒前
han完成签到,获得积分10
30秒前
32秒前
超级笑南发布了新的文献求助10
33秒前
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248312
求助须知:如何正确求助?哪些是违规求助? 2891711
关于积分的说明 8268289
捐赠科研通 2559658
什么是DOI,文献DOI怎么找? 1388504
科研通“疑难数据库(出版商)”最低求助积分说明 650772
邀请新用户注册赠送积分活动 627733