已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hybrid feature extraction technique for automatic classification of COVID-19 chest CT images

支持向量机 人工智能 特征提取 模式识别(心理学) 局部二进制模式 计算机科学 定向梯度直方图 直方图 分类器(UML) 粒子群优化 特征(语言学) 2019年冠状病毒病(COVID-19) 医学 图像(数学) 病理 机器学习 疾病 传染病(医学专业) 哲学 语言学
作者
Shaowei Wang,Qizhi Fu,Wenna Chen,Jincan Zhang,Ganqin Du,Hongwei Jiang,Jinghua Li,Xin Zhao
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Informa]
卷期号:11 (7): 2627-2636
标识
DOI:10.1080/21681163.2023.2250861
摘要

ABSTRACTCOVID-19 has seriously affected normal life as well as public safety. It is extremely transmissible and has now infected millions of people worldwide. To obtain more image features of the lungs, Computed Tomography (CT) scans are widely used. However, manual examination of CT images for abnormal areas of COVID-19 disease can be time-consuming, and it is highly subjective to determine whether they are infected. To rapidly screen patients, Machine Learning (ML) can be used to determine whether patients have the disease. In this paper, a hybrid extraction technique is used to extract feature vectors from CT images, which is a mixture of a histogram of orientation gradients (HOG) extraction technique and a local binary pattern (LBP) extraction technique. In this experiment, 960 NON-COVID-19 and 960 COVID-19 were adopted to train the model, and 240 NON-COVID-19 and 240 COVID-19 were used to test the model. And the CT images were scaled to a uniform size. After obtaining the feature vectors using HOG and LBP feature extraction methods, The CT images were classified using a Support Vector Machine (SVM) classifier optimised by Particle Swarm Optimisation (PSO). In the performance evaluation of the presented classification model, the combination of the HOG feature extraction technique and the LBP feature extraction technique resulted in a substantial improvement in the classification effectiveness of the SVM. HOG_LBP PSO SVM improved Accuracy to 97.5%, Precision to 97.75%, Recall to 97.27%, Specificity to 97.25%, F1_score to 97.50%, and Mcc to 95.01%.KEYWORDS: COVID-19HOGLBPHOG_LBP SVM AcknowledgementsThis work was supported by the National Natural Science Foundation of China (No. 31800836), China Postdoctoral Science Foundation (No. 2020M682285), Medical and Health Research Project in Luoyang (No. 2001027A), and Construction Project of Improving Medical Service Capacity of Provincial Medical Institutions in Henan Province (No. 2017-51). Project of Luoyang Science and Technology Bureau (2020YZ23).We acknowledge the support of these foundations. We would like to thank the Soares research group for providing the public available SARS-CoV-2 CT scan dataset [20].Disclosure statementNo potential conflict of interest was reported by the author(s).Authors' contributionsShaowei Wang, Qizhi Fu, and Wenna Chen contributed equally to this work. Shaowei Wang, Wenna Chen, Qizhi Fu, Hongwei Jiang and Jincan Zhang conceptualised and designed the study. Qizhi Fu and Jincan Zhang provided the administrative support. Ganqin Du, Qizhi Fu, Jinghua Li and Xin Zhao provided the study materials. Jinghua Li, Xin Zhao collected and assembled the data. Shaowei Wang, Wenna Chen performed the data analysis and interpretation. Shaowei Wang, Wenna Chen, Qizhi Fu and Jincan Zhang wrote the manuscript. All authors approved the final manuscript.Data availability statementData used to support the findings of this study are available online at https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset, and further inquiries can be directed to the corresponding author.Ethical approvalThis article uses the CT images, which were made publicly available by a research group as mentioned in 'Method'. Therefore, the authors of this study were not involved directly with human participants or animals.Additional informationFundingThe work was supported by the China Postdoctoral Science Foundation [2020M682285]; National Natural Science Foundation of China [31800836]; Medical and Health Research Project in Luoyang [2001027A]; Construction Project of Improving Medical Service Capacity of Provincial Medical Institutions in Henan Province [2017-51]; Project of Luoyang Science and Technology Bureau [2020YZ23].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CGFHEMAN完成签到 ,获得积分10
1秒前
可乐发布了新的文献求助10
3秒前
wanwan524完成签到 ,获得积分10
4秒前
Ambi发布了新的文献求助80
5秒前
6秒前
默默善愁完成签到,获得积分10
6秒前
旭滟完成签到,获得积分20
6秒前
慕青应助笑点低中心采纳,获得10
7秒前
乐观期待完成签到,获得积分10
8秒前
短腿小柯基完成签到 ,获得积分10
11秒前
李爱国应助Lebpom采纳,获得10
11秒前
12秒前
13秒前
Jasper应助jasonyang123456采纳,获得10
14秒前
皮皮完成签到 ,获得积分10
14秒前
17秒前
小蘑菇应助蟑螂不偷油采纳,获得10
17秒前
21秒前
23秒前
55完成签到,获得积分10
23秒前
雪中完成签到 ,获得积分10
25秒前
D3发布了新的文献求助10
25秒前
六元一斤虾完成签到 ,获得积分10
25秒前
瘦瘦的迎南完成签到 ,获得积分10
26秒前
月光完成签到,获得积分20
27秒前
无花果应助多肉葡萄采纳,获得10
28秒前
30秒前
穆千完成签到,获得积分10
31秒前
31秒前
34秒前
35秒前
wys发布了新的文献求助10
36秒前
39秒前
40秒前
呼啦啦啦完成签到,获得积分10
41秒前
sttarrr发布了新的文献求助10
43秒前
bkagyin应助xaogny采纳,获得10
45秒前
gg完成签到,获得积分10
46秒前
46秒前
46秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746340
求助须知:如何正确求助?哪些是违规求助? 5432754
关于积分的说明 15355163
捐赠科研通 4886241
什么是DOI,文献DOI怎么找? 2627141
邀请新用户注册赠送积分活动 1575625
关于科研通互助平台的介绍 1532338