亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid feature extraction technique for automatic classification of COVID-19 chest CT images

支持向量机 人工智能 特征提取 模式识别(心理学) 局部二进制模式 计算机科学 定向梯度直方图 直方图 分类器(UML) 粒子群优化 特征(语言学) 2019年冠状病毒病(COVID-19) 医学 图像(数学) 病理 机器学习 疾病 传染病(医学专业) 语言学 哲学
作者
Shaowei Wang,Qizhi Fu,Wenna Chen,Jincan Zhang,Ganqin Du,Hongwei Jiang,Jinghua Li,Xin Zhao
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Taylor & Francis]
卷期号:11 (7): 2627-2636
标识
DOI:10.1080/21681163.2023.2250861
摘要

ABSTRACTCOVID-19 has seriously affected normal life as well as public safety. It is extremely transmissible and has now infected millions of people worldwide. To obtain more image features of the lungs, Computed Tomography (CT) scans are widely used. However, manual examination of CT images for abnormal areas of COVID-19 disease can be time-consuming, and it is highly subjective to determine whether they are infected. To rapidly screen patients, Machine Learning (ML) can be used to determine whether patients have the disease. In this paper, a hybrid extraction technique is used to extract feature vectors from CT images, which is a mixture of a histogram of orientation gradients (HOG) extraction technique and a local binary pattern (LBP) extraction technique. In this experiment, 960 NON-COVID-19 and 960 COVID-19 were adopted to train the model, and 240 NON-COVID-19 and 240 COVID-19 were used to test the model. And the CT images were scaled to a uniform size. After obtaining the feature vectors using HOG and LBP feature extraction methods, The CT images were classified using a Support Vector Machine (SVM) classifier optimised by Particle Swarm Optimisation (PSO). In the performance evaluation of the presented classification model, the combination of the HOG feature extraction technique and the LBP feature extraction technique resulted in a substantial improvement in the classification effectiveness of the SVM. HOG_LBP PSO SVM improved Accuracy to 97.5%, Precision to 97.75%, Recall to 97.27%, Specificity to 97.25%, F1_score to 97.50%, and Mcc to 95.01%.KEYWORDS: COVID-19HOGLBPHOG_LBP SVM AcknowledgementsThis work was supported by the National Natural Science Foundation of China (No. 31800836), China Postdoctoral Science Foundation (No. 2020M682285), Medical and Health Research Project in Luoyang (No. 2001027A), and Construction Project of Improving Medical Service Capacity of Provincial Medical Institutions in Henan Province (No. 2017-51). Project of Luoyang Science and Technology Bureau (2020YZ23).We acknowledge the support of these foundations. We would like to thank the Soares research group for providing the public available SARS-CoV-2 CT scan dataset [20].Disclosure statementNo potential conflict of interest was reported by the author(s).Authors' contributionsShaowei Wang, Qizhi Fu, and Wenna Chen contributed equally to this work. Shaowei Wang, Wenna Chen, Qizhi Fu, Hongwei Jiang and Jincan Zhang conceptualised and designed the study. Qizhi Fu and Jincan Zhang provided the administrative support. Ganqin Du, Qizhi Fu, Jinghua Li and Xin Zhao provided the study materials. Jinghua Li, Xin Zhao collected and assembled the data. Shaowei Wang, Wenna Chen performed the data analysis and interpretation. Shaowei Wang, Wenna Chen, Qizhi Fu and Jincan Zhang wrote the manuscript. All authors approved the final manuscript.Data availability statementData used to support the findings of this study are available online at https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset, and further inquiries can be directed to the corresponding author.Ethical approvalThis article uses the CT images, which were made publicly available by a research group as mentioned in 'Method'. Therefore, the authors of this study were not involved directly with human participants or animals.Additional informationFundingThe work was supported by the China Postdoctoral Science Foundation [2020M682285]; National Natural Science Foundation of China [31800836]; Medical and Health Research Project in Luoyang [2001027A]; Construction Project of Improving Medical Service Capacity of Provincial Medical Institutions in Henan Province [2017-51]; Project of Luoyang Science and Technology Bureau [2020YZ23].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
17秒前
晓晓发布了新的文献求助150
22秒前
在水一方应助81299采纳,获得10
28秒前
彩虹儿应助琉忆采纳,获得10
46秒前
晓晓完成签到,获得积分10
46秒前
48秒前
CoCoco完成签到 ,获得积分10
49秒前
nito发布了新的文献求助10
50秒前
平常的三问完成签到 ,获得积分10
51秒前
51秒前
zzr发布了新的文献求助30
53秒前
81299发布了新的文献求助10
57秒前
digger2023完成签到 ,获得积分10
1分钟前
81299完成签到,获得积分20
1分钟前
1分钟前
morena应助科研通管家采纳,获得30
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
思源应助畅快的涵蕾采纳,获得10
1分钟前
海派Hi完成签到 ,获得积分10
1分钟前
1分钟前
李健应助皮托采纳,获得10
2分钟前
追寻的纸鹤完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
皮托发布了新的文献求助10
2分钟前
汉堡包应助Jayden采纳,获得10
2分钟前
情怀应助Jayden采纳,获得10
2分钟前
king完成签到 ,获得积分10
2分钟前
2分钟前
Jayden发布了新的文献求助10
3分钟前
ETA完成签到,获得积分10
3分钟前
追寻完成签到 ,获得积分10
3分钟前
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4917957
求助须知:如何正确求助?哪些是违规求助? 4190814
关于积分的说明 13015347
捐赠科研通 3960453
什么是DOI,文献DOI怎么找? 2171264
邀请新用户注册赠送积分活动 1189307
关于科研通互助平台的介绍 1097534