Hybrid feature extraction technique for automatic classification of COVID-19 chest CT images

支持向量机 人工智能 特征提取 模式识别(心理学) 局部二进制模式 计算机科学 定向梯度直方图 直方图 分类器(UML) 粒子群优化 特征(语言学) 2019年冠状病毒病(COVID-19) 医学 图像(数学) 病理 机器学习 疾病 传染病(医学专业) 哲学 语言学
作者
Shaowei Wang,Qizhi Fu,Wenna Chen,Jincan Zhang,Ganqin Du,Hongwei Jiang,Jinghua Li,Xin Zhao
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Taylor & Francis]
卷期号:11 (7): 2627-2636
标识
DOI:10.1080/21681163.2023.2250861
摘要

ABSTRACTCOVID-19 has seriously affected normal life as well as public safety. It is extremely transmissible and has now infected millions of people worldwide. To obtain more image features of the lungs, Computed Tomography (CT) scans are widely used. However, manual examination of CT images for abnormal areas of COVID-19 disease can be time-consuming, and it is highly subjective to determine whether they are infected. To rapidly screen patients, Machine Learning (ML) can be used to determine whether patients have the disease. In this paper, a hybrid extraction technique is used to extract feature vectors from CT images, which is a mixture of a histogram of orientation gradients (HOG) extraction technique and a local binary pattern (LBP) extraction technique. In this experiment, 960 NON-COVID-19 and 960 COVID-19 were adopted to train the model, and 240 NON-COVID-19 and 240 COVID-19 were used to test the model. And the CT images were scaled to a uniform size. After obtaining the feature vectors using HOG and LBP feature extraction methods, The CT images were classified using a Support Vector Machine (SVM) classifier optimised by Particle Swarm Optimisation (PSO). In the performance evaluation of the presented classification model, the combination of the HOG feature extraction technique and the LBP feature extraction technique resulted in a substantial improvement in the classification effectiveness of the SVM. HOG_LBP PSO SVM improved Accuracy to 97.5%, Precision to 97.75%, Recall to 97.27%, Specificity to 97.25%, F1_score to 97.50%, and Mcc to 95.01%.KEYWORDS: COVID-19HOGLBPHOG_LBP SVM AcknowledgementsThis work was supported by the National Natural Science Foundation of China (No. 31800836), China Postdoctoral Science Foundation (No. 2020M682285), Medical and Health Research Project in Luoyang (No. 2001027A), and Construction Project of Improving Medical Service Capacity of Provincial Medical Institutions in Henan Province (No. 2017-51). Project of Luoyang Science and Technology Bureau (2020YZ23).We acknowledge the support of these foundations. We would like to thank the Soares research group for providing the public available SARS-CoV-2 CT scan dataset [20].Disclosure statementNo potential conflict of interest was reported by the author(s).Authors' contributionsShaowei Wang, Qizhi Fu, and Wenna Chen contributed equally to this work. Shaowei Wang, Wenna Chen, Qizhi Fu, Hongwei Jiang and Jincan Zhang conceptualised and designed the study. Qizhi Fu and Jincan Zhang provided the administrative support. Ganqin Du, Qizhi Fu, Jinghua Li and Xin Zhao provided the study materials. Jinghua Li, Xin Zhao collected and assembled the data. Shaowei Wang, Wenna Chen performed the data analysis and interpretation. Shaowei Wang, Wenna Chen, Qizhi Fu and Jincan Zhang wrote the manuscript. All authors approved the final manuscript.Data availability statementData used to support the findings of this study are available online at https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset, and further inquiries can be directed to the corresponding author.Ethical approvalThis article uses the CT images, which were made publicly available by a research group as mentioned in 'Method'. Therefore, the authors of this study were not involved directly with human participants or animals.Additional informationFundingThe work was supported by the China Postdoctoral Science Foundation [2020M682285]; National Natural Science Foundation of China [31800836]; Medical and Health Research Project in Luoyang [2001027A]; Construction Project of Improving Medical Service Capacity of Provincial Medical Institutions in Henan Province [2017-51]; Project of Luoyang Science and Technology Bureau [2020YZ23].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zhangyu应助Gengar采纳,获得10
2秒前
shenwanggong完成签到,获得积分10
2秒前
2秒前
共享精神应助www采纳,获得10
3秒前
南极的企鹅365完成签到 ,获得积分10
3秒前
北风发布了新的文献求助10
3秒前
4秒前
Rondab应助123采纳,获得30
5秒前
lucky发布了新的文献求助10
6秒前
萧七七发布了新的文献求助10
6秒前
6秒前
yukriyy发布了新的文献求助10
7秒前
7秒前
8秒前
DRHOUSE完成签到,获得积分10
9秒前
pluto发布了新的文献求助10
9秒前
炖地瓜完成签到 ,获得积分10
9秒前
DavidXie完成签到,获得积分20
9秒前
10秒前
涨秋池发布了新的文献求助10
10秒前
过丫丫完成签到,获得积分10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得30
11秒前
orixero应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
FIN应助科研通管家采纳,获得30
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
12秒前
smile完成签到,获得积分10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049