Deep Nonlocal Regularizer: A Self-Supervised Learning Method for 3-D Seismic Denoising

降噪 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 深度学习 算法 图像(数学)
作者
Zitai Xu,Yisi Luo,Bangyu Wu,Deyu Meng,Yangkang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:4
标识
DOI:10.1109/tgrs.2023.3329303
摘要

Noise suppression for seismic data can meliorate the quality of many subsequent geophysical tasks. In this work, we propose a novel self-supervised learning method, the deep nonlocal regularizer (DNLR), for 3D seismic denoising. Our DNLR fully exploits the nonlocal self-similarity of seismic data under a self-supervised learning framework for noise attenuation. It can be flexibly combined with different hand-crafted regularizers, e.g., total variation, nuclear norm, and correlated total variation, by performing the regularizer on nonlocal self-similar patches, which more effectively characterizes the intrinsic structures underlying seismic data. Our DNLR can be easily plugged into existing self-supervised denoising methods, e.g., deep image prior and Self2Self, and consistently improve their performance. To make the optimization model tractable, an algorithm based on the alternating direction multiplier method is introduced to solve the DNLR-based seismic denoising problem. Extensive seismic denoising experiments on synthetic and field data validate the superior performances of our DNLR as compared with state-of-the-art model-based and deep learning seismic denoising methods. Code is available at https://github.com/XuZitai/DNLR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助铲子采纳,获得10
刚刚
insissst发布了新的文献求助10
1秒前
HUYUE发布了新的文献求助30
1秒前
2秒前
3秒前
3秒前
4秒前
pp发布了新的文献求助10
4秒前
Dissipater完成签到,获得积分10
5秒前
情怀应助insissst采纳,获得10
5秒前
凌露完成签到 ,获得积分0
6秒前
瑕灬发布了新的文献求助10
6秒前
6秒前
jimmy应助完美的海秋采纳,获得10
7秒前
8秒前
9秒前
9秒前
科研通AI2S应助zhang采纳,获得10
11秒前
彭于晏应助冯冯冯采纳,获得10
11秒前
12秒前
Owen应助封志泽采纳,获得10
12秒前
12秒前
silence完成签到,获得积分10
13秒前
铲子发布了新的文献求助10
13秒前
14秒前
羲x发布了新的文献求助10
15秒前
墨水完成签到 ,获得积分10
15秒前
傅宛白发布了新的文献求助10
15秒前
无花果应助林夕采纳,获得10
20秒前
丘比特应助瑕灬采纳,获得10
21秒前
科研通AI2S应助杨凤艳采纳,获得10
21秒前
22秒前
22秒前
jimmy应助完美的海秋采纳,获得10
22秒前
25秒前
25秒前
25秒前
yy完成签到,获得积分10
25秒前
26秒前
踏实的水蓉完成签到,获得积分10
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264832
求助须知:如何正确求助?哪些是违规求助? 2904818
关于积分的说明 8331672
捐赠科研通 2575168
什么是DOI,文献DOI怎么找? 1399707
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633316