Deep Nonlocal Regularizer: A Self-Supervised Learning Method for 3-D Seismic Denoising

降噪 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 深度学习 算法 图像(数学)
作者
Zitai Xu,Yisi Luo,Bangyu Wu,Deyu Meng,Yangkang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:4
标识
DOI:10.1109/tgrs.2023.3329303
摘要

Noise suppression for seismic data can meliorate the quality of many subsequent geophysical tasks. In this work, we propose a novel self-supervised learning method, the deep nonlocal regularizer (DNLR), for 3D seismic denoising. Our DNLR fully exploits the nonlocal self-similarity of seismic data under a self-supervised learning framework for noise attenuation. It can be flexibly combined with different hand-crafted regularizers, e.g., total variation, nuclear norm, and correlated total variation, by performing the regularizer on nonlocal self-similar patches, which more effectively characterizes the intrinsic structures underlying seismic data. Our DNLR can be easily plugged into existing self-supervised denoising methods, e.g., deep image prior and Self2Self, and consistently improve their performance. To make the optimization model tractable, an algorithm based on the alternating direction multiplier method is introduced to solve the DNLR-based seismic denoising problem. Extensive seismic denoising experiments on synthetic and field data validate the superior performances of our DNLR as compared with state-of-the-art model-based and deep learning seismic denoising methods. Code is available at https://github.com/XuZitai/DNLR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可达燊应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Leif应助科研通管家采纳,获得10
1秒前
shouyu29应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
细心觅风完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
人福药业应助Sunrise采纳,获得10
2秒前
科研人完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
bkagyin应助Mr_Hao采纳,获得20
3秒前
研友_VZG7GZ应助无辜洋葱采纳,获得10
3秒前
3秒前
李李完成签到,获得积分10
4秒前
超级水壶发布了新的文献求助10
4秒前
4秒前
4秒前
张自信发布了新的文献求助10
6秒前
开灯人和关灯人完成签到,获得积分10
6秒前
调研昵称发布了新的文献求助10
6秒前
6秒前
6秒前
华仔应助qiqi采纳,获得10
7秒前
Rebecca完成签到,获得积分10
7秒前
7秒前
8秒前
Mlwwq发布了新的文献求助10
8秒前
领导范儿应助长情洙采纳,获得10
8秒前
洋洋完成签到,获得积分20
9秒前
Owen应助WY采纳,获得30
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762