癌症研究
基因敲除
免疫系统
免疫印迹
化学
细胞凋亡
生物
免疫学
生物化学
基因
作者
Zhiwei Zhang,Deping Sun,Hong Tang,Jie Ren,Shilin Yin,Kai Yang
标识
DOI:10.1136/jitc-2023-007627
摘要
Background Programmed death-ligand 1 (PD-L1) contributes to the immune escape of tumor cells and is a critical target for antitumor immunotherapy. However, the molecular mechanisms regulating PD-L1 expression remain unclear, hindering the development of effective therapies. Here we investigate the role and molecular mechanism of the core clock gene Period2 (PER2) in regulating PD-L1 expression and its role in the combination therapy of oral squamous cell carcinoma (OSCC). Methods Quantitative real-time PCR, western blotting or immunohistochemistry to detect expression of PER2 and PD-L1 in OSCC tissues and cells. Overexpression and knockdown of PER2 detects the function of PER2. Bioinformatics, immunoprecipitation, GST pull-down, CHX chase assay and western blot and strip to detect the mechanism of PER2 regulation for PD-L1. A humanized immune reconstitution subcutaneous xenograft mouse model was established to investigate the combination therapy efficacy. Results In OSCC tissues and cells, PER2 expression was reduced and PD-L1 expression was increased, the expression of PER2 was significantly negatively correlated with PD-L1. In vitro and in vivo experiments demonstrated that PER2 inhibited PD-L1 expression and enhanced T-cell-mediated OSCC cell killing by suppressing the IKK/NF-κB pathway. Mechanistically, PER2 binds to heat shock protein 90 (HSP90) through the PAS1 domain and reduces the interaction of HSP90 with inhibitors of kappa B kinase (IKKs), promoting the ubiquitination of IKKα/β and p65 nuclear translocation to inhibit IKK/NF-κB pathway, thereby suppressing PD-L1 expression. In humanized immune reconstitution subcutaneous xenograft mouse model, it was demonstrated that PER2 targeting combined with anti-PD-L1 treatment improved the inhibition of OSCC growth by promoting CD8 + T-cell infiltration into the tumor. Conclusions Our findings reveal the role and mechanism of PD-L1 regulation by PER2 and support the potential clinical application of PER2 targeting in combination with anti-PD-L1 in OSCC immunotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI