聚丙烯酰胺
吸附
干燥剂
复合材料
材料科学
纤维
玻璃纤维
吸附
高分子化学
化学
有机化学
作者
Yimo Liu,Zhongbao Liu,Zepeng Wang,Weiming Sun
出处
期刊:Polymers
[MDPI AG]
日期:2023-09-06
卷期号:15 (18): 3678-3678
被引量:2
标识
DOI:10.3390/polym15183678
摘要
The water sorption and desorption properties of solid adsorbent materials are crucial in rotary dehumidification systems. Metal organic frameworks (MOFs) and hydrogels are mostly at the laboratory stage due to factors like the synthesis process and yield. In this study, we utilized an eco-friendly and large-scale synthesis method to prepare polyacrylamide (PAM) hydrogels (yielding approximately 500 mL from a single polymerization). Subsequently, PAM was then coated onto glass fiber paper (GFP), which serves as a commonly employed substrate in desiccant wheels. By incorporating the hygroscopic salt LiCl and optimizing the content of each component, the water sorption performance of the composite was notably improved. The water sorption and desorption performances, as well as cycling stability, were evaluated and compared with composites containing aluminum fumarate, LiCl, and GFP (AlFum-LiCl&GFP). The results revealed that PAM-LiCl&GFP outperformed AlFum-LiCl&GFP in terms of sorption capacity throughout various relative humidity (RH) levels. It achieved a water uptake of 1.06 g·g−1 at 25 °C and 30% RH, corresponding to a water sorption rate coefficient K of 15.32 × 10−4 s−1. Furthermore, the lower desorption temperature (60 °C) resulting in a desorption ratio of 82.6%, along with the excellent cycling stability and effective performance as a desiccant wheel module, provide evidence for the potential application of PAM-LiCl&GFP in desiccant wheels.
科研通智能强力驱动
Strongly Powered by AbleSci AI