Explainable Deep Learning for False Information Identification: An Argumentation Theory Approach

论证理论 计算机科学 鉴定(生物学) 论证(复杂分析) 人工智能 适度 过程(计算) 任务(项目管理) 数据科学 论证框架 社会化媒体 事件(粒子物理) 机器学习 认识论 哲学 生物化学 植物 化学 物理 管理 量子力学 万维网 经济 生物 操作系统
作者
Kyuhan Lee,Sudha Ram
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:35 (2): 890-907 被引量:9
标识
DOI:10.1287/isre.2020.0097
摘要

To combat false information, social media sites have heavily relied on content moderation, mostly performed by human workers. However, human content moderation entails multiple problems, including huge labor costs, ineffectiveness, and ethical issues. To overcome these concerns, social media companies are aggressively investing in the development of artificial intelligence-powered false information detection systems. Extant efforts, however, have failed to understand the nature of human argumentation, delegating the process of making inferences of the truth to the black box of neural networks. They fail to attend to important aspects of how humans make judgments on the veracity of an argument, creating important challenges. To this end, based on Toulmin’s model of argumentation, we propose a computational framework that helps machine learning for false information identification understand the connection between a claim (whose veracity needs to be verified) and evidence (which contains information to support or refute the claim). The two experiments for testing model performance and explainability reveal that our framework shows stronger performance and better explainability, outperforming cutting-edge machine learning methods and presenting positive effects on human task performance, trust in algorithms, and confidence in decision making. Our results shed new light on the growing field of automated false information identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
2秒前
3秒前
CC发布了新的文献求助10
3秒前
3秒前
八月睡大觉完成签到,获得积分10
4秒前
林谷雨发布了新的文献求助10
4秒前
JamesPei应助uraylong采纳,获得10
4秒前
5秒前
5秒前
ding应助gong采纳,获得10
6秒前
劳动之余完成签到,获得积分20
6秒前
阿龙发布了新的文献求助10
6秒前
CipherSage应助梦里格斗家采纳,获得10
6秒前
漂亮的人生完成签到,获得积分10
7秒前
sanages发布了新的文献求助10
9秒前
壶壶壶完成签到 ,获得积分10
9秒前
疯狂吃辣发布了新的文献求助10
9秒前
Ran发布了新的文献求助10
9秒前
含蓄的赛君完成签到,获得积分10
10秒前
程瑶瑶瑶完成签到 ,获得积分10
10秒前
12秒前
柑橘乌云完成签到,获得积分10
12秒前
13秒前
13秒前
眯眯眼的老鼠完成签到,获得积分10
13秒前
14秒前
15秒前
Kyone完成签到,获得积分10
15秒前
ccm应助无语的钢铁侠采纳,获得10
16秒前
16秒前
夜空发布了新的文献求助10
17秒前
哈哈发布了新的文献求助10
19秒前
ACaTo发布了新的文献求助10
19秒前
19秒前
鸿渐于陆发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578692
求助须知:如何正确求助?哪些是违规求助? 3997386
关于积分的说明 12375523
捐赠科研通 3671644
什么是DOI,文献DOI怎么找? 2023482
邀请新用户注册赠送积分活动 1057516
科研通“疑难数据库(出版商)”最低求助积分说明 944359