Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries

电解质 锂(药物) 材料科学 接口(物质) 纳米技术 化学工程 冶金 化学 工程类 复合材料 医学 物理化学 电极 毛细管数 内分泌学 毛细管作用
作者
Zhuo Han,Danfeng Zhang,Haixian Wang,Guorui Zheng,Ming Liu,Yan‐Bing He
出处
期刊:Acta Physico-chimica Sinica [Peking University Press]
卷期号:: 2307034-2307034 被引量:8
标识
DOI:10.3866/pku.whxb202307034
摘要

Abstract: One of the crucial directions in the pursuit of high-energy-density lithium batteries involves pairing Ni-rich cathodes with lithium metal anodes (LMAs). However, battery systems with high energy density often suffer from issues such as poor phase structure stability and inadequate interface compatibility. These problems are exacerbated under the actual operating conditions with high cut-off voltages and wide temperature ranges. Interface degradation, in such cases, accelerates the destruction of phase structure, leading to rapid performance deterioration of electrode materials. Compared to methods like ion doping and surface coating, an approach centered around electrolyte-induced interface reconstruction modification through solvent-lithium salt optimization or functional additives shows promise. This approach allows for simultaneous electrochemical cyclic modification of both high-energy-density cathode and anode materials, and it can be easily integrated into large-scale industrial production. Ester-based electrolytes, while possessing greater voltage stability compared to ether-based electrolytes, still exhibit side reactions at the interface between high Ni-content cathodes and the electrolyte, as well as between Li metal anodes and the electrolyte. In the absence of effective cathode-electrolyte interface (CEI) and solid-electrolyte interface (SEI) protection, persistent side reactions occur, ultimately leading to electrode failure. To address these challenges and simultaneously enhance electrode/electrolyte interface compatibility while regulating electrolyte solvation structure, functional additives are employed to modify the electrochemical behavior of the high-energy-density battery interface. Traditional ether electrolytes often employ lithium hexafluorophosphate (LiPF6) as the primary salt. However, LiPF6 suffers from poor thermal stability. Its decomposition or hydrolysis generates hydrogen fluoride (HF), which corrodes the cathode. Moreover, LiPF6 decomposition releases phosphorus pentafluoride (PF5), triggering the ring-opening of ethylene carbonate (EC), leading to electrolyte failure. PF5 can also react with water to produce acidic compounds, further deteriorating battery performance. The extraction of Li+ ions in the cathode reduces oxygen binding energy, facilitating the release of lattice oxygen. This can lead to side reactions between reactive oxygen species and the electrolyte, increasing interface impedance. To tackle these issues, choosing electrolyte additives with diverse functions can expand the potential of electrolytes. By leveraging various functional electrolyte additives, it becomes possible to inhibit irreversible structural transformations in the cathode, prevent O2/CO2 precipitation, suppress interface side reactions, and facilitate the removal of acid-water impurities. This comprehensive study delves into the impact of different functional electrolyte additives on interface film reconstruction, interfacial adsorption stability, synergy on high-energy-density anode interface, and acid-water impurity removal in Ni-rich cathode and anode materials. The research opens up new avenues for the identification and design of specific functionalized additives, paving the way for achieving stable cycling in high-energy-density Ni-rich lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小程同学完成签到,获得积分10
1秒前
111完成签到,获得积分10
1秒前
安沐完成签到,获得积分10
1秒前
烟花应助李扒皮采纳,获得10
1秒前
LYDZ2完成签到,获得积分10
1秒前
1秒前
Lionel发布了新的文献求助10
2秒前
仁爱静芙完成签到,获得积分10
2秒前
88就是發完成签到 ,获得积分10
2秒前
myy完成签到,获得积分10
2秒前
samtol完成签到,获得积分10
2秒前
江湖有九哥完成签到,获得积分10
3秒前
ZXCVB完成签到,获得积分10
3秒前
sketch发布了新的文献求助10
3秒前
4秒前
细腻的海露完成签到 ,获得积分10
4秒前
追寻绮玉完成签到,获得积分10
4秒前
Zhang完成签到,获得积分10
4秒前
JESI完成签到,获得积分10
5秒前
yliu完成签到,获得积分10
5秒前
GXR发布了新的文献求助10
5秒前
如意的剑鬼完成签到,获得积分10
6秒前
6秒前
风车车完成签到,获得积分10
6秒前
abcdefg发布了新的文献求助10
6秒前
lll发布了新的文献求助10
7秒前
水木应助朴实海亦采纳,获得30
7秒前
苏梓卿完成签到,获得积分10
8秒前
小何完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
SamYUkee发布了新的文献求助10
11秒前
sky完成签到,获得积分10
13秒前
Gulu_完成签到 ,获得积分10
13秒前
lily完成签到 ,获得积分10
14秒前
CipherSage应助petranko采纳,获得10
14秒前
安详可燕发布了新的文献求助10
15秒前
q792309106发布了新的文献求助10
16秒前
Ting完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953623
求助须知:如何正确求助?哪些是违规求助? 3499390
关于积分的说明 11095224
捐赠科研通 3229945
什么是DOI,文献DOI怎么找? 1785807
邀请新用户注册赠送积分活动 869573
科研通“疑难数据库(出版商)”最低求助积分说明 801479