Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries

电解质 锂(药物) 材料科学 接口(物质) 纳米技术 化学工程 冶金 化学 工程类 复合材料 医学 物理化学 电极 毛细管数 毛细管作用 内分泌学
作者
Zhuo Han,Danfeng Zhang,Haixian Wang,Guorui Zheng,Ming Liu,Yan‐Bing He
出处
期刊:Acta Physico-chimica Sinica [Peking University Press]
卷期号:: 2307034-2307034 被引量:9
标识
DOI:10.3866/pku.whxb202307034
摘要

Abstract: One of the crucial directions in the pursuit of high-energy-density lithium batteries involves pairing Ni-rich cathodes with lithium metal anodes (LMAs). However, battery systems with high energy density often suffer from issues such as poor phase structure stability and inadequate interface compatibility. These problems are exacerbated under the actual operating conditions with high cut-off voltages and wide temperature ranges. Interface degradation, in such cases, accelerates the destruction of phase structure, leading to rapid performance deterioration of electrode materials. Compared to methods like ion doping and surface coating, an approach centered around electrolyte-induced interface reconstruction modification through solvent-lithium salt optimization or functional additives shows promise. This approach allows for simultaneous electrochemical cyclic modification of both high-energy-density cathode and anode materials, and it can be easily integrated into large-scale industrial production. Ester-based electrolytes, while possessing greater voltage stability compared to ether-based electrolytes, still exhibit side reactions at the interface between high Ni-content cathodes and the electrolyte, as well as between Li metal anodes and the electrolyte. In the absence of effective cathode-electrolyte interface (CEI) and solid-electrolyte interface (SEI) protection, persistent side reactions occur, ultimately leading to electrode failure. To address these challenges and simultaneously enhance electrode/electrolyte interface compatibility while regulating electrolyte solvation structure, functional additives are employed to modify the electrochemical behavior of the high-energy-density battery interface. Traditional ether electrolytes often employ lithium hexafluorophosphate (LiPF6) as the primary salt. However, LiPF6 suffers from poor thermal stability. Its decomposition or hydrolysis generates hydrogen fluoride (HF), which corrodes the cathode. Moreover, LiPF6 decomposition releases phosphorus pentafluoride (PF5), triggering the ring-opening of ethylene carbonate (EC), leading to electrolyte failure. PF5 can also react with water to produce acidic compounds, further deteriorating battery performance. The extraction of Li+ ions in the cathode reduces oxygen binding energy, facilitating the release of lattice oxygen. This can lead to side reactions between reactive oxygen species and the electrolyte, increasing interface impedance. To tackle these issues, choosing electrolyte additives with diverse functions can expand the potential of electrolytes. By leveraging various functional electrolyte additives, it becomes possible to inhibit irreversible structural transformations in the cathode, prevent O2/CO2 precipitation, suppress interface side reactions, and facilitate the removal of acid-water impurities. This comprehensive study delves into the impact of different functional electrolyte additives on interface film reconstruction, interfacial adsorption stability, synergy on high-energy-density anode interface, and acid-water impurity removal in Ni-rich cathode and anode materials. The research opens up new avenues for the identification and design of specific functionalized additives, paving the way for achieving stable cycling in high-energy-density Ni-rich lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助每天都在做梦采纳,获得10
1秒前
jimoon完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
zxq完成签到,获得积分20
2秒前
KMidly完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
liu发布了新的文献求助10
3秒前
jimoon发布了新的文献求助10
4秒前
5秒前
南柯一梦关注了科研通微信公众号
6秒前
juan发布了新的文献求助10
6秒前
香蕉觅云应助乐观的海采纳,获得10
7秒前
7秒前
wangyuchen发布了新的文献求助10
7秒前
prrrratt发布了新的文献求助10
8秒前
ding发布了新的文献求助20
8秒前
拯救小岛发布了新的文献求助10
9秒前
CodeCraft应助万事顺意采纳,获得10
9秒前
10秒前
10秒前
快乐的冰岚完成签到 ,获得积分20
10秒前
lisiying发布了新的文献求助10
11秒前
nnn完成签到,获得积分10
12秒前
跳跃的洋葱完成签到 ,获得积分10
12秒前
希望天下0贩的0应助小十采纳,获得10
12秒前
KMidly发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
王梅完成签到,获得积分10
13秒前
11发布了新的文献求助10
14秒前
任性映秋完成签到,获得积分10
14秒前
周诗琪发布了新的文献求助10
15秒前
奋斗的怀曼完成签到,获得积分10
16秒前
chen发布了新的文献求助10
16秒前
高高的善斓完成签到 ,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913037
求助须知:如何正确求助?哪些是违规求助? 4187850
关于积分的说明 13005445
捐赠科研通 3956288
什么是DOI,文献DOI怎么找? 2169145
邀请新用户注册赠送积分活动 1187530
关于科研通互助平台的介绍 1095032