Skin lesion recognition via global-local attention and dual-branch input network

计算机科学 人工智能 模式识别(心理学) 冗余(工程) 对偶(语法数字) 机器学习 操作系统 文学类 艺术
作者
Ling Tan,Wu Hui,Jingming Xia,Ying Liang,Jining Zhu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107385-107385 被引量:11
标识
DOI:10.1016/j.engappai.2023.107385
摘要

Owing to the deficiency of training data, the variety of skin lesion shapes for different patients, inter-class similarity, and intra-class variation, the recognition accuracy and speed in skin lesion recognition based on deep learning remain challenging. To solve the above issues, we propose a Dual-Branch and Global-Local Attention network based on ResNet50 (DGLA-ResNet50) to reduce model parameters and improve identification accuracy. For inter-class and intra-class problems, a global-local attention mechanism is designed to obtain the dependency information of query points in horizontal and vertical directions in turn for obtaining the global information indirectly. And we choose to obtain the local information through multiple convolutions simultaneously. Aiming at insufficient samples, the attention mechanism is lightened from the perspectives of reducing query points and the points associated with them, so as to reduce parameter redundancy. In addition, we present a dual-branch input network to deal with the problem of image variety, in which two branches are used to extract image features with different resolutions for fusion, so as to expand the network receptive field. We evaluated DGLA-ResNet50 on ISIC2018 and ISIC2019. The experimental results on ISIC2018 demonstrate that DGLA-ResNet50 has a recognition accuracy of 90.71%, while the parameters of the model are only 104.2M and the FLOPs value is 15.6G. Compared with the common models, our model obtains significantly better performance. The results indicate that DGLA-ResNet50 can improve the accuracy well while ensuring the lightweight of the model, and can prospectively assist doctors in the rapid diagnosis of skin lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaokang123应助阳仔采纳,获得10
1秒前
2秒前
CipherSage应助mw采纳,获得10
3秒前
能干谷梦完成签到 ,获得积分10
3秒前
大牛发布了新的文献求助10
5秒前
5秒前
+青鸟发布了新的文献求助10
9秒前
一杯美式完成签到,获得积分20
9秒前
傻芙芙的完成签到,获得积分10
12秒前
12秒前
13秒前
研友_VZG7GZ应助清澈水眸采纳,获得10
14秒前
14秒前
14秒前
火星上的菲鹰应助bobo采纳,获得10
15秒前
坚强亦丝应助小楠采纳,获得20
16秒前
lzl发布了新的文献求助10
17秒前
hmhu发布了新的文献求助10
18秒前
酷酷寻雪完成签到 ,获得积分10
18秒前
义气觅荷发布了新的文献求助10
18秒前
凡仔完成签到,获得积分20
21秒前
科研通AI5应助+青鸟采纳,获得10
26秒前
111完成签到,获得积分20
26秒前
Rain发布了新的文献求助10
26秒前
Upupuu完成签到,获得积分10
26秒前
27秒前
bkagyin应助西凉河葛三叔采纳,获得30
29秒前
31秒前
32秒前
annafan应助单纯的雅香采纳,获得10
32秒前
32秒前
han发布了新的文献求助20
32秒前
研友_VZG7GZ应助dmj采纳,获得10
33秒前
欣常在完成签到 ,获得积分10
36秒前
丘比特应助艾艾采纳,获得10
36秒前
芋芋发布了新的文献求助10
36秒前
37秒前
37秒前
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565412
求助须知:如何正确求助?哪些是违规求助? 3138412
关于积分的说明 9426508
捐赠科研通 2838766
什么是DOI,文献DOI怎么找? 1560539
邀请新用户注册赠送积分活动 729695
科研通“疑难数据库(出版商)”最低求助积分说明 717569