Hierarchical Category-Enhanced Prototype Learning for Imbalanced Temporal Recommendation
计算机科学
重采样
机器学习
人工智能
推荐系统
功能(生物学)
训练集
进化生物学
生物
作者
X. Y. Gao,Zhuoqi Ma,Jiangtao Cui,Xiaofang Xia,Cai Xu
标识
DOI:10.1145/3581783.3613829
摘要
Temporal recommendation systems aim to suggest items to users at the optimal time. However, the significant imbalance of items in the training data poses a major challenge to predictive accuracy. Existing approaches attempt to alleviate this issue by modifying the loss function or utilizing resampling techniques, but such approaches may inadvertently amplify the specificity of certain behaviors.