已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-objective constrained black-box optimization algorithm based on feasible region localization and performance-improvement exploration

数学优化 计算机科学 黑匣子 趋同(经济学) 进化算法 最优化问题 约束优化 多目标优化 可行区 约束优化问题 约束(计算机辅助设计) 算法 人工智能 数学 经济增长 经济 几何学
作者
Jinglu Li,Huachao Dong,Peng Wang,Jiangtao Shen,Dezhou Qin
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:148: 110874-110874 被引量:6
标识
DOI:10.1016/j.asoc.2023.110874
摘要

Over the past decade, surrogate-assisted evolutionary algorithms have demonstrated their effectiveness across various computationally expensive real-world domains. Nevertheless, the focus of surrogate-assisted multi-objective evolutionary algorithms has primarily centered on non-constrained optimization problems. There has been relatively limited exploration into addressing expensive constrained multi-objective optimization problems, which inherently require a delicate equilibrium between convergence, diversity, and feasibility. To bridge this gap, this paper concentrates on constrained multi-objective optimization problems where both objectives and constraints involve substantial computational costs. In response, a novel data-driven constrained multi-objective evolutionary algorithm is introduced, leveraging feasible region localization and performance-improvement exploration. For feasible region localization, a constraints-domain-search strategy is presented to locate the feasible region quickly. To enhance performance-improvement exploration, a progressive enhancement of convergence and diversity is achieved through the incorporation of constraint penalties. With the help of exploration and exploitation, the proposed algorithm can balance convergence, diversity, and feasibility while working within a limited number of function evaluations. By comparing the proposed algorithm with state-of-the-art algorithms on 66 mathematical problems and a resource-intensive black-box problem, its outstanding performance for solving multi-objective constrained black-box problems is validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助harry采纳,获得10
2秒前
3秒前
3秒前
没烦恼发布了新的文献求助10
4秒前
星期五13完成签到 ,获得积分10
4秒前
Hello应助歪比巴卜采纳,获得30
5秒前
wop111发布了新的文献求助10
6秒前
6秒前
ShuangqingYE完成签到,获得积分10
6秒前
7秒前
10秒前
服了您完成签到 ,获得积分10
10秒前
12秒前
Sym发布了新的文献求助10
13秒前
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
lige完成签到 ,获得积分10
14秒前
Akim应助wop111采纳,获得10
14秒前
隐形曼青应助幽默白秋采纳,获得30
15秒前
Sym完成签到,获得积分10
18秒前
NEO完成签到 ,获得积分10
18秒前
LMY完成签到 ,获得积分10
18秒前
19秒前
歪比巴卜完成签到,获得积分20
21秒前
22秒前
22秒前
22秒前
Chouvikin完成签到,获得积分10
23秒前
晟sheng完成签到 ,获得积分10
23秒前
24秒前
monster完成签到 ,获得积分10
26秒前
大王完成签到,获得积分10
26秒前
甜蜜邑发布了新的文献求助10
27秒前
大模型应助南山采纳,获得10
27秒前
27秒前
朱帅发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944474
求助须知:如何正确求助?哪些是违规求助? 4209382
关于积分的说明 13085189
捐赠科研通 3989085
什么是DOI,文献DOI怎么找? 2183984
邀请新用户注册赠送积分活动 1199325
关于科研通互助平台的介绍 1112262