Multi-objective constrained black-box optimization algorithm based on feasible region localization and performance-improvement exploration

数学优化 计算机科学 黑匣子 趋同(经济学) 进化算法 最优化问题 约束优化 多目标优化 可行区 约束优化问题 约束(计算机辅助设计) 算法 人工智能 数学 经济增长 经济 几何学
作者
Jinglu Li,Huachao Dong,Peng Wang,Jiangtao Shen,Dezhou Qin
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110874-110874 被引量:6
标识
DOI:10.1016/j.asoc.2023.110874
摘要

Over the past decade, surrogate-assisted evolutionary algorithms have demonstrated their effectiveness across various computationally expensive real-world domains. Nevertheless, the focus of surrogate-assisted multi-objective evolutionary algorithms has primarily centered on non-constrained optimization problems. There has been relatively limited exploration into addressing expensive constrained multi-objective optimization problems, which inherently require a delicate equilibrium between convergence, diversity, and feasibility. To bridge this gap, this paper concentrates on constrained multi-objective optimization problems where both objectives and constraints involve substantial computational costs. In response, a novel data-driven constrained multi-objective evolutionary algorithm is introduced, leveraging feasible region localization and performance-improvement exploration. For feasible region localization, a constraints-domain-search strategy is presented to locate the feasible region quickly. To enhance performance-improvement exploration, a progressive enhancement of convergence and diversity is achieved through the incorporation of constraint penalties. With the help of exploration and exploitation, the proposed algorithm can balance convergence, diversity, and feasibility while working within a limited number of function evaluations. By comparing the proposed algorithm with state-of-the-art algorithms on 66 mathematical problems and a resource-intensive black-box problem, its outstanding performance for solving multi-objective constrained black-box problems is validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiewen发布了新的文献求助10
2秒前
2秒前
Oz完成签到,获得积分10
2秒前
zhukun发布了新的文献求助10
3秒前
3秒前
6秒前
香蕉觅云应助oliver501采纳,获得10
6秒前
正经俠完成签到 ,获得积分20
7秒前
YY完成签到 ,获得积分10
8秒前
清秀灵薇发布了新的文献求助10
8秒前
LZL完成签到 ,获得积分10
8秒前
油焖青椒完成签到,获得积分10
8秒前
不会学术的羊完成签到,获得积分10
9秒前
9秒前
lio完成签到,获得积分20
10秒前
10秒前
FashionBoy应助汤浩宏采纳,获得10
11秒前
wjwless完成签到,获得积分10
12秒前
稀罕你发布了新的文献求助10
12秒前
圣晟胜发布了新的文献求助10
12秒前
寒冷半雪完成签到,获得积分10
16秒前
善良易文发布了新的文献求助10
16秒前
orixero应助GXY采纳,获得30
16秒前
香蕉不言发布了新的文献求助10
16秒前
迅速海云发布了新的文献求助10
17秒前
xiamovivi完成签到,获得积分10
18秒前
bitahu完成签到,获得积分20
18秒前
路边一颗小草完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
乐乐应助勤劳落雁采纳,获得30
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
852应助独特亦旋采纳,获得10
20秒前
20秒前
20秒前
无花果应助科研通管家采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849