离群值
射线照相术
人工智能
异常检测
全髋关节置换术
计算机科学
分类器(UML)
医学
模式识别(心理学)
放射科
外科
作者
Pouria Rouzrokh,John P. Mickley,Bardia Khosravi,Shahriar Faghani,Mana Moassefi,WILLIAM SCHULZ,Bradley J. Erickson,Michael J. Taunton,Cody C. Wyles
标识
DOI:10.1016/j.arth.2023.09.025
摘要
Revision total hip arthroplasty (THA) requires preoperatively identifying in situ implants, a time-consuming and sometimes unachievable task. Although deep learning (DL) tools have been attempted to automate this process, existing approaches are limited by classifying few femoral and zero acetabular components, only classify on anterior-posterior (AP) radiographs, and do not report prediction uncertainty or flag outlier data.
科研通智能强力驱动
Strongly Powered by AbleSci AI