纳滤
结垢
化学
膜
胞外聚合物
膜污染
微滤
超滤(肾)
生物污染
浓差极化
色谱法
化学工程
流出物
环境化学
环境工程
生物化学
环境科学
生物膜
生物
细菌
工程类
遗传学
作者
Dachao Lin,Chun Sing Lai,Xiaokai Wang,Zhihong Wang,Kunyan Kuang,Ziyuan Wang,Xi Du,Lifan Liu
标识
DOI:10.1016/j.scitotenv.2023.167110
摘要
Microplastic (MP) has been found to influence membrane fouling during microfiltration/ultrafiltration processes in direct and indirect ways by acting as fouling components and changing microbial activities, respectively. However, there is no relevant research about the contribution of MPs to nanofiltration membrane fouling. In this study, for the first time, the impacts of MPs on membrane fouling during the nanofiltration of secondary effluent (SE) were systematically investigated from the perspective of bacterial extracellular polymeric substances (EPS) secretion, their interaction with coexisting pollutants and also deposition. Membrane flux behaviors indicate that MPs simultaneously aggravated the short-term and long-term membrane fouling resistance of nanofiltration by 46 % and 27 %, respectively. ATR-FTIR, XPS and spectrophotometry spectra demonstrate that the deteriorated membrane fouling by MPs directly resulted from the increased accumulation of protein-like, polysaccharides-like and humic-like substances on membranes. EEM spectra further confirmed that MPs preferred to induce serious cake layers, which dominated membrane flux decline but hindered pore fouling. According to CLSM and SEM-EDS mappings, MPs in SE could stimulate microbial activities and then aggravate EPS secretion, after which their interaction with Ca2+ was also enhanced in bulk solution. The cross-linker nets could promote the deposition of other unlinked pollutants on membranes. Besides, MPs could weaken the rejection of certain dissolved organic matters (from 57 % to 52 % on the 50th day of filtration) by aggravating cake-enhanced concentration polarization (CECP), but improved the average removal of inorganic salts from 58 % to 63 % by improving their back diffusion through cake layers. Based on these analyses, the mechanisms of MP-enhanced membrane fouling during the nanofiltration of SE can be thoroughly revealed.
科研通智能强力驱动
Strongly Powered by AbleSci AI