化学
检出限
阳极
催化作用
分析物
阴极
选择性
电极
纳米技术
色谱法
有机化学
物理化学
材料科学
作者
Bingyu Du,Guangqiu Lu,Ziwei Zhang,Ye Feng,Meichuan Liu
标识
DOI:10.1016/j.aca.2023.341817
摘要
The self-powered sensor (SPS) is a sensor method that does not require the external power source and has the potential for portable detection of environmental contaminants. In this work, for the first time, a biomolecule-free SPS for detection of ultra-trace triazine endocrine disruptor atrazine (ATZ) with high sensitivity and selectivity is constructed using a glucose oxidase (GOD)-like cobalt metal-organic framework (Co-MOF) nanozyme-modified high-performance anode and a molecularly imprinted cathode. By modulating the size and morphology of the prepared materials, Co-MOF nanozyme with superior GOD-like property (Michaelis constant Km = 15.8 mM) has been obtained and modified at the anode to catalyze glucose oxidation with high efficiency and provide energy continuously and stably for the SPS. The separation mode of anodic energy supply-cathodic recognition ensures the recognition effect without affecting the catalytic characteristic of Co-MOF and the output signal of the SPS. The designed SPS has a wide linear range of 1 pM-100 nM and a detection limit as low as 0.65 pM, as well as superior selectivity and good stability. The present work provides a promising approach for the design of self-powered sensors which can be extended to detection of a wider range of environmental pollutants.
科研通智能强力驱动
Strongly Powered by AbleSci AI