Multi-objective squirrel search algorithm for EEG feature selection

计算机科学 特征选择 脑-机接口 人工智能 特征(语言学) 选择(遗传算法) 模式识别(心理学) 集合(抽象数据类型) 超参数优化 数据挖掘 机器学习 算法 支持向量机 脑电图 语言学 哲学 精神科 程序设计语言 心理学
作者
Chao Wang,Songjie Li,Miao Shi,Jie Zhao,Tao Wen,U. Rajendra Acharya,Nenggang Xie,Kang Hao Cheong
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:73: 102140-102140
标识
DOI:10.1016/j.jocs.2023.102140
摘要

Feature selection plays a critical role in the application of Brain Computer Interface (BCI) systems. Many methods have been used to solve the feature selection problem, but they model it as a single-objective problem, considering only classification accuracy or number of features. To close this critical gap, we improve the squirrel search algorithm by combining it with the grid method, and propose a Multi-Objective Squirrel Search Algorithm (MOSSA) to solve the feature selection problem in BCI. We conduct experiments on three publicly available motion imagery datasets, and the experimental results reveal the best classification results of the method on dataset 1. The average classification accuracy of dataset 2 is 96.71%, with the number of selected features reduced to 18 on average. The highest classification accuracy of dataset 3 is 83.57% on the training set and 82.86% on the test set. In addition, we compare MOSSA with other algorithms and the results show the superiority of our proposed method in solving the feature selection problem. Finally, we combine MOSSA with an online application of BCI, where subjects visualize controlling the robot to perform the corresponding actions by the left and right hand movements. The average recognition rate of the three subjects is approximately 70%. In summary, the MOSSA is an effective method for solving the feature selection problem and is useful for the development of online applications of BCI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
李爱国应助Jarvis采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助150
2秒前
墨子白完成签到,获得积分10
2秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
大力帽子应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
大个应助ahxb采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
大力帽子应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
天空发布了新的文献求助10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
彭于彦祖应助科研通管家采纳,获得30
3秒前
李健应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
HOAN应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
大力帽子应助科研通管家采纳,获得10
4秒前
大力帽子应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
大角牛完成签到,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534