Multi-objective squirrel search algorithm for EEG feature selection

计算机科学 特征选择 脑-机接口 人工智能 特征(语言学) 选择(遗传算法) 模式识别(心理学) 集合(抽象数据类型) 超参数优化 数据挖掘 机器学习 算法 支持向量机 脑电图 语言学 哲学 精神科 程序设计语言 心理学
作者
Chao Wang,Songjie Li,Miao Shi,Jie Zhao,Tao Wen,U. Rajendra Acharya,Nenggang Xie,Kang Hao Cheong
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:73: 102140-102140
标识
DOI:10.1016/j.jocs.2023.102140
摘要

Feature selection plays a critical role in the application of Brain Computer Interface (BCI) systems. Many methods have been used to solve the feature selection problem, but they model it as a single-objective problem, considering only classification accuracy or number of features. To close this critical gap, we improve the squirrel search algorithm by combining it with the grid method, and propose a Multi-Objective Squirrel Search Algorithm (MOSSA) to solve the feature selection problem in BCI. We conduct experiments on three publicly available motion imagery datasets, and the experimental results reveal the best classification results of the method on dataset 1. The average classification accuracy of dataset 2 is 96.71%, with the number of selected features reduced to 18 on average. The highest classification accuracy of dataset 3 is 83.57% on the training set and 82.86% on the test set. In addition, we compare MOSSA with other algorithms and the results show the superiority of our proposed method in solving the feature selection problem. Finally, we combine MOSSA with an online application of BCI, where subjects visualize controlling the robot to perform the corresponding actions by the left and right hand movements. The average recognition rate of the three subjects is approximately 70%. In summary, the MOSSA is an effective method for solving the feature selection problem and is useful for the development of online applications of BCI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
碎冰蓝发布了新的文献求助10
刚刚
1秒前
1秒前
lelele完成签到,获得积分10
1秒前
cheems完成签到,获得积分10
1秒前
烟花应助合适凡采纳,获得10
1秒前
taco完成签到,获得积分10
2秒前
2秒前
ye完成签到,获得积分20
3秒前
热情丸子发布了新的文献求助10
3秒前
打打应助5C采纳,获得200
3秒前
大龙哥886应助181s采纳,获得10
4秒前
大模型应助181s采纳,获得10
4秒前
4秒前
4秒前
受伤的广缘完成签到,获得积分20
5秒前
想飞的猪完成签到,获得积分10
5秒前
6秒前
科研通AI6应助小晓俊采纳,获得10
6秒前
无花果应助齐小明采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
哈哈哈哈完成签到,获得积分10
7秒前
qidada发布了新的文献求助10
7秒前
后撤步7777发布了新的文献求助10
7秒前
靓丽雁风完成签到 ,获得积分20
8秒前
曹影发布了新的文献求助10
8秒前
8秒前
柍踏发布了新的文献求助10
9秒前
9秒前
顾钦发布了新的文献求助10
9秒前
典雅长颈鹿完成签到,获得积分10
10秒前
11秒前
12秒前
zbzfp完成签到,获得积分10
12秒前
qidada完成签到,获得积分10
12秒前
13秒前
13秒前
JamesPei应助青春奇谈采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551649
求助须知:如何正确求助?哪些是违规求助? 4636518
关于积分的说明 14644292
捐赠科研通 4578369
什么是DOI,文献DOI怎么找? 2510780
邀请新用户注册赠送积分活动 1486083
关于科研通互助平台的介绍 1457449