IEFM and IDS: Enhancing 3D environment perception via information encoding in indoor point cloud semantic segmentation

点云 计算机科学 编码(内存) 分割 点(几何) 人工智能 干扰(通信) 数据挖掘 计算机视觉 电信 几何学 数学 频道(广播)
作者
Kaixiang Huang,Jin Wang,Jingru Yang,Ying Yang,Guodong Lu,Yuzhen Chen,Huan Yu,Qifeng Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:563: 126944-126944 被引量:1
标识
DOI:10.1016/j.neucom.2023.126944
摘要

The point cloud semantic segmentation plays a significant role in the understanding of 3D environment. However, current 3D point cloud segmentation methods pay little attention in the inevitable blurring and loss of point information within deep network, which considerably impairs the segmentation performance, particularly in the complex and colorful indoor scenes. To overcome the inevitable loss of point information (position, color and normal vector), in this paper, we propose a brand-new Information Encoding and Fusion Module (IEFM), comprising a point Information Encoding Method (IEM) and an optimized Multi-Encoding Fusion Method (EFM). In terms of constructing the innovative bias standardization of point information and effectively merging other information encodings into position encoding, IEFM adaptively complements the loss of the point information and thereby achieving enhanced environment perception ability. Additionally, although the proposed IEFM is capable of managing multi-class point information, the encoding interference resulting from the coexistence of multiple information is quite unavoidable, leading to detrimental consequences for the overall semantic segmentation performance. Therefore, to reduce the information encoding interference problem, we further innovatively propose the Information Distribution Strategy (IDS), in terms of hierarchically distribute kinds of point information, so that the interference of multiple information encodings will be extremely mitigated and achieving more accurate indoor point cloud semantic segmentation. Benefiting from the modular design, the proposed IEFM and IDS can be easily inserted in existing point-based point cloud segmentation models. The experimental results have shown the effectiveness of our proposed methods across multiple state-of-the-art models and benchmarks (S3DIS and ScanNet), achieving competitive performance of 77.4% mIoU on the large-scale S3DIS benchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小金星星完成签到 ,获得积分10
刚刚
刚刚
1秒前
tuanheqi应助124332采纳,获得50
2秒前
2秒前
breath发布了新的文献求助10
3秒前
俏皮的沧海完成签到,获得积分10
4秒前
点凌蝶完成签到,获得积分10
4秒前
0617发布了新的文献求助10
7秒前
11秒前
Xxxxr发布了新的文献求助20
15秒前
大个应助0617采纳,获得10
15秒前
Lan完成签到 ,获得积分10
17秒前
17秒前
科研buff完成签到,获得积分10
17秒前
英俊的铭应助气泡水采纳,获得10
18秒前
格非发布了新的文献求助10
18秒前
summy发布了新的文献求助10
18秒前
小小毅1989完成签到 ,获得积分10
20秒前
21秒前
21秒前
Skyeisland完成签到,获得积分10
24秒前
童0731发布了新的文献求助10
25秒前
26秒前
younger004完成签到,获得积分20
26秒前
28秒前
29秒前
开心的鬼神完成签到,获得积分10
30秒前
上进生完成签到,获得积分10
35秒前
科研通AI2S应助124332采纳,获得10
35秒前
36秒前
hmfyl发布了新的文献求助10
36秒前
优美的世开完成签到,获得积分20
37秒前
Elena发布了新的文献求助10
39秒前
童0731完成签到,获得积分10
40秒前
40秒前
深情安青应助科研小白菜采纳,获得10
41秒前
vivi完成签到,获得积分10
43秒前
45秒前
萧水白应助小橘猫采纳,获得10
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308531
求助须知:如何正确求助?哪些是违规求助? 2941839
关于积分的说明 8506196
捐赠科研通 2616831
什么是DOI,文献DOI怎么找? 1429824
科研通“疑难数据库(出版商)”最低求助积分说明 663928
邀请新用户注册赠送积分活动 649040