Greylag Goose Optimization: Nature-inspired optimization algorithm

算法 计算机科学 群体行为 进化算法 水准点(测量) 秩(图论) 人工智能 数学优化 数学 大地测量学 生物 组合数学 古生物学 地理
作者
El-Sayed M. El-kenawy,Nima Khodadadi,Seyedali Mirjalili,Abdelaziz A. Abdelhamid,Marwa M. Eid,Abdelhameed Ibrahim‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122147-122147 被引量:146
标识
DOI:10.1016/j.eswa.2023.122147
摘要

Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such algorithms can be divided into evolution-based and swarm-based algorithms. This paper proposed a new nature-inspired optimizer called the Greylag Goose Optimization (GGO) algorithm. The proposed algorithm (GGO) belongs to the class of swarm-based algorithms and is inspired by the Greylag Goose. Geese are excellent flyers and during their seasonal migrations, they fly in a group and can cover thousands of kilometers in a single flight. While flying, a group of geese forms themselves as a "V" configuration. In this way, the geese in the front can minimize the air resistance of the ones in the back. This allows the geese to fly around 70% farther as a group than they could individually. The GGO algorithm is first validated by being applied to nineteen datasets retrieved from the UCI Machine Learning Repository. Each dataset contains a varied amount of characteristics, instances, and classes that are used to choose features. After that, it is put to use in the process of solving a number of engineering benchmark functions and case studies. Several case studies are solved using the proposed algorithm too, including the pressure vessel design and the tension/compression spring design. The findings demonstrate that the GGO method outperforms numerous other comparative optimization algorithms and delivers superior accuracy compared to other algorithms. The results of the statistical analysis tests, such as Wilcoxon's rank-sum and one-way analysis of variance (ANOVA), demonstrate that the GGO algorithm achieves superior results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jewie完成签到 ,获得积分10
1秒前
博慧完成签到 ,获得积分10
3秒前
5秒前
7秒前
wxs完成签到,获得积分10
8秒前
YJ完成签到,获得积分10
9秒前
weng完成签到,获得积分10
10秒前
16秒前
开朗问晴发布了新的文献求助10
21秒前
儒雅的蜜粉完成签到,获得积分10
31秒前
Orange应助huang采纳,获得10
32秒前
满意的伊完成签到,获得积分10
34秒前
36秒前
42秒前
46秒前
喜悦的香之完成签到 ,获得积分10
47秒前
进击的巨人完成签到 ,获得积分10
49秒前
只有辣椒没有油完成签到 ,获得积分10
49秒前
huang发布了新的文献求助10
49秒前
科研通AI5应助sun采纳,获得10
51秒前
森森完成签到 ,获得积分10
57秒前
tangchao完成签到,获得积分10
1分钟前
谢谢大佬们完成签到 ,获得积分10
1分钟前
小事完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xmqaq完成签到,获得积分10
1分钟前
隐形曼青应助小韩采纳,获得10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
慕青应助orchid采纳,获得10
1分钟前
1分钟前
1分钟前
sun发布了新的文献求助10
1分钟前
longer完成签到 ,获得积分10
1分钟前
小九完成签到,获得积分10
1分钟前
1分钟前
霍霍完成签到 ,获得积分10
1分钟前
LZJ完成签到 ,获得积分10
1分钟前
skbkbe完成签到 ,获得积分10
1分钟前
drift完成签到,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733493
求助须知:如何正确求助?哪些是违规求助? 3277642
关于积分的说明 10003648
捐赠科研通 2993705
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944