ETCNet: An EEG-based motor imagery classification model combining efficient channel attention and temporal convolutional network

脑-机接口 卷积神经网络 计算机科学 脑电图 特征提取 人工智能 运动表象 模式识别(心理学) 接口(物质) 深度学习 频道(广播) 特征(语言学) 语音识别 机器学习 心理学 神经科学 计算机网络 语言学 哲学 气泡 最大气泡压力法 并行计算
作者
Yuxin Qin,Baojiang Li,Wenlong Wang,Xingbin Shi,Haiyan Wang,Xichao Wang
出处
期刊:Brain Research [Elsevier BV]
卷期号:1823: 148673-148673 被引量:12
标识
DOI:10.1016/j.brainres.2023.148673
摘要

Brain-computer interface (BCI) enables the control of external devices using signals from the brain, offering immense potential in assisting individuals with neuromuscular disabilities. Among the different paradigms of BCI systems, the motor imagery (MI) based electroencephalogram (EEG) signal is widely recognized as exceptionally promising. Deep learning (DL) has found extensive applications in the processing of MI signals, wherein convolutional neural networks (CNNs) have demonstrated superior performance compared to conventional machine learning approaches. Nevertheless, challenges related to subject independence and subject dependence persist, while the inherent low signal-to-noise ratio of EEG signals remains a critical aspect that demands attention. Accurately deciphering intentions from EEG signals continues to present a formidable challenge. This paper introduces an advanced end-to-end network that effectively combines the efficient channel attention (ECA) and temporal convolutional network (TCN) components for the classification of motor imagination signals. We incorporated an ECA module prior to feature extraction in order to enhance the extraction of channel-specific features. A compact convolutional network model uses for feature extraction in the middle part. Finally, the time characteristic information is obtained by using TCN. The results show that our network is a lightweight network that is characterized by few parameters and fast speed. Our network achieves an average accuracy of 80.71% on the BCI Competition IV-2a dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
小杭76应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
张楚雅婷完成签到 ,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助谭志迅采纳,获得10
2秒前
哈基米德应助科研通管家采纳,获得20
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
馆长应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得50
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
哈基米德应助科研通管家采纳,获得20
4秒前
uniny发布了新的文献求助10
4秒前
4秒前
4秒前
YYBAS发布了新的文献求助10
5秒前
所所应助cc采纳,获得10
6秒前
科研通AI6应助读书的时候采纳,获得10
6秒前
6秒前
7秒前
Rabbit完成签到,获得积分10
8秒前
8秒前
单薄夜梅完成签到,获得积分20
9秒前
10秒前
张楚雅婷关注了科研通微信公众号
10秒前
12秒前
Owen应助charint采纳,获得10
12秒前
无忧完成签到,获得积分10
12秒前
热心芷雪完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017460
求助须知:如何正确求助?哪些是违规求助? 4257073
关于积分的说明 13267567
捐赠科研通 4061370
什么是DOI,文献DOI怎么找? 2221225
邀请新用户注册赠送积分活动 1230555
关于科研通互助平台的介绍 1153161