热电效应
兴奋剂
化学
热电材料
声子
凝聚态物理
功勋
声子散射
纳米技术
化学物理
材料科学
光电子学
热力学
物理
作者
Animesh Bhui,Subarna Das,Raagya Arora,Usha Bhat,Prabir Dutta,Tanmoy Ghosh,Riddhimoy Pathak,Ranjan Datta,Umesh V. Waghmare,Kanishka Biswas
摘要
Defect engineering, achieved by precise tuning of the atomic disorder within crystalline solids, forms a cornerstone of structural chemistry. This nuanced approach holds the potential to significantly augment thermoelectric performance by synergistically manipulating the interplay between the charge carrier and lattice dynamics. Here, the current study presents a distinctive investigation wherein the introduction of Hg doping into AgSbTe2 serves to partially curtail structural disorder. This strategic maneuver mitigates potential fluctuations originating from pronounced charge and size disparities between Ag+ and Sb3+, positioned in octahedral sites within the rock salt structure. Hg doping significantly improves the phase stability of AgSbTe2 by restricting the congenital emergence of the Ag2Te minor secondary phase and promotes partial atomic ordering in the cation sublattice. Reduction in atomic disorder coalesced with a complementary modification of electronic structure by Hg doping results in increased carrier mobility. The formation of nanoscale superstructure with sizes (2-5 nm) of the order of phonon mean free path in AgSbTe2 is further promoted by reduced partial disorder, causes enhanced scattering of heat-carrying phonons, and results in a glass-like ultralow lattice thermal conductivity (∼0.32 W m-1 K-1 at 297 K). Cumulatively, the multifaceted influence of Hg doping, in conjunction with the consequential reduction in disorder, allows achieving a high thermoelectric figure-of-merit, zT, of ∼2.4 at ∼570 K. This result defies conventional paradigms that prioritize increased disorder for optimizing zT.
科研通智能强力驱动
Strongly Powered by AbleSci AI