Hg Doping Induced Reduction in Structural Disorder Enhances the Thermoelectric Performance in AgSbTe2

热电效应 兴奋剂 化学 热电材料 声子 凝聚态物理 功勋 声子散射 纳米技术 化学物理 材料科学 光电子学 热力学 物理
作者
Animesh Bhui,Subarna Das,Raagya Arora,Usha Bhat,Prabir Dutta,Tanmoy Ghosh,Riddhimoy Pathak,Ranjan Datta,Umesh V. Waghmare,Kanishka Biswas
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (46): 25392-25400 被引量:14
标识
DOI:10.1021/jacs.3c09643
摘要

Defect engineering, achieved by precise tuning of the atomic disorder within crystalline solids, forms a cornerstone of structural chemistry. This nuanced approach holds the potential to significantly augment thermoelectric performance by synergistically manipulating the interplay between the charge carrier and lattice dynamics. Here, the current study presents a distinctive investigation wherein the introduction of Hg doping into AgSbTe2 serves to partially curtail structural disorder. This strategic maneuver mitigates potential fluctuations originating from pronounced charge and size disparities between Ag+ and Sb3+, positioned in octahedral sites within the rock salt structure. Hg doping significantly improves the phase stability of AgSbTe2 by restricting the congenital emergence of the Ag2Te minor secondary phase and promotes partial atomic ordering in the cation sublattice. Reduction in atomic disorder coalesced with a complementary modification of electronic structure by Hg doping results in increased carrier mobility. The formation of nanoscale superstructure with sizes (2-5 nm) of the order of phonon mean free path in AgSbTe2 is further promoted by reduced partial disorder, causes enhanced scattering of heat-carrying phonons, and results in a glass-like ultralow lattice thermal conductivity (∼0.32 W m-1 K-1 at 297 K). Cumulatively, the multifaceted influence of Hg doping, in conjunction with the consequential reduction in disorder, allows achieving a high thermoelectric figure-of-merit, zT, of ∼2.4 at ∼570 K. This result defies conventional paradigms that prioritize increased disorder for optimizing zT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yujiuwu发布了新的文献求助10
刚刚
深情安青应助ZhongxiangDing采纳,获得10
1秒前
Bazinga发布了新的文献求助10
1秒前
ding应助科研通管家采纳,获得10
2秒前
zhou应助科研通管家采纳,获得10
2秒前
Ganlou应助科研通管家采纳,获得10
2秒前
霸气的怜珊完成签到,获得积分20
2秒前
今后应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Ganlou应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
zys2001mezy应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
3秒前
huo应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
Ganlou应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Ganlou应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
调皮冷风完成签到,获得积分10
4秒前
Akim应助1223采纳,获得10
5秒前
ang发布了新的文献求助10
5秒前
5秒前
贾贾关注了科研通微信公众号
6秒前
王一通关注了科研通微信公众号
7秒前
科研通AI2S应助葡萄没有籽采纳,获得10
8秒前
8秒前
8秒前
10秒前
Jay01发布了新的文献求助10
10秒前
乐乐应助QZZ采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313305
求助须知:如何正确求助?哪些是违规求助? 2945741
关于积分的说明 8526806
捐赠科研通 2621466
什么是DOI,文献DOI怎么找? 1433588
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650585