Known and unknown class recognition on plant species and diseases

Softmax函数 分类器(UML) 人工智能 模式识别(心理学) 计算机科学 机器学习 特征(语言学) 班级(哲学) 人工神经网络 语言学 哲学
作者
Meng Ye,Mingle Xu,Hyongsuk Kim,Sook Yoon,Yongchae Jeong,Dong Sun Park
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:215: 108408-108408
标识
DOI:10.1016/j.compag.2023.108408
摘要

Recognizing plant species and disease is essential to practical applications, such as keeping biodiversity and obtaining a desired crop yield. This study aims to extend the recognition from known to unknown classes in the context of plants, termed Plant-relevant Open-Set Recognition (POSR). In this task, a trained model is required to either classify an input image into one of the known classes or an unknown class, even if the model is only trained with the images of known classes. To achieve this task, we propose a method to obtain a high-performance classifier with compact feature distributions for known classes. To have a high-performance classifier, a ViT model pre-trained in the PlantCLEF2022 dataset is transferred, following an observation that a plant-related source dataset is more beneficial to plant species and disease recognition than other commonly used datasets, such as ImageNet. To have compact feature distributions, we adopt additive margin Softmax loss (AM-Softmax) which brings the distance smaller between the features of the same known class and hence gives more spaces for the unknown class. Extensive experimental results suggest that our method outperforms current algorithms. To be more specific, our method obtains AUROC 93.685 and OSCR 93.256 on average on four public datasets, with an average accuracy of 99.295 on closed-set classification. We believe that our study will contribute to the community and, to fuel the field, our codes will be public2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
苦行僧完成签到,获得积分10
2秒前
牛牛眉目发布了新的文献求助10
3秒前
4秒前
共享精神应助Yuki酱采纳,获得10
5秒前
今后应助陈希铭采纳,获得10
6秒前
zz发布了新的文献求助10
6秒前
嗯哼哈哈发布了新的文献求助10
7秒前
笑哦完成签到,获得积分10
9秒前
月亮moon完成签到,获得积分10
10秒前
诺颜爱发布了新的文献求助10
13秒前
FDY完成签到,获得积分10
14秒前
TheaGao完成签到 ,获得积分10
16秒前
冯冯完成签到 ,获得积分10
18秒前
传奇3应助XXXXX采纳,获得10
18秒前
yx_cheng应助ll采纳,获得10
22秒前
郭京京完成签到 ,获得积分10
23秒前
OPV完成签到,获得积分0
23秒前
bbsheng完成签到,获得积分10
25秒前
头孢西丁完成签到 ,获得积分10
26秒前
27秒前
李健应助牛牛牛采纳,获得10
27秒前
yan发布了新的文献求助20
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388