Known and unknown class recognition on plant species and diseases

Softmax函数 分类器(UML) 人工智能 模式识别(心理学) 计算机科学 机器学习 特征(语言学) 班级(哲学) 人工神经网络 语言学 哲学
作者
Meng Ye,Mingle Xu,Hyongsuk Kim,Sook Yoon,Yongchae Jeong,Dong Sun Park
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108408-108408
标识
DOI:10.1016/j.compag.2023.108408
摘要

Recognizing plant species and disease is essential to practical applications, such as keeping biodiversity and obtaining a desired crop yield. This study aims to extend the recognition from known to unknown classes in the context of plants, termed Plant-relevant Open-Set Recognition (POSR). In this task, a trained model is required to either classify an input image into one of the known classes or an unknown class, even if the model is only trained with the images of known classes. To achieve this task, we propose a method to obtain a high-performance classifier with compact feature distributions for known classes. To have a high-performance classifier, a ViT model pre-trained in the PlantCLEF2022 dataset is transferred, following an observation that a plant-related source dataset is more beneficial to plant species and disease recognition than other commonly used datasets, such as ImageNet. To have compact feature distributions, we adopt additive margin Softmax loss (AM-Softmax) which brings the distance smaller between the features of the same known class and hence gives more spaces for the unknown class. Extensive experimental results suggest that our method outperforms current algorithms. To be more specific, our method obtains AUROC 93.685 and OSCR 93.256 on average on four public datasets, with an average accuracy of 99.295 on closed-set classification. We believe that our study will contribute to the community and, to fuel the field, our codes will be public2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Freja完成签到,获得积分10
2秒前
淡然发布了新的文献求助10
2秒前
cdy发布了新的文献求助10
6秒前
6秒前
qqq完成签到 ,获得积分10
6秒前
kiki发布了新的文献求助10
7秒前
8秒前
张宝发布了新的文献求助10
8秒前
柯ke完成签到,获得积分10
9秒前
Ava应助YK采纳,获得10
10秒前
hdh016完成签到,获得积分10
11秒前
12秒前
青与绿完成签到,获得积分10
17秒前
友好石头发布了新的文献求助10
17秒前
芳华如梦完成签到 ,获得积分10
19秒前
chu完成签到,获得积分10
19秒前
冰bing发布了新的文献求助10
21秒前
Akim应助可可杨采纳,获得10
22秒前
23秒前
李李完成签到 ,获得积分10
23秒前
xl应助小魏不睡觉采纳,获得20
25秒前
chu发布了新的文献求助10
26秒前
时尚平卉完成签到,获得积分10
27秒前
王能能完成签到,获得积分10
28秒前
30秒前
qinzx完成签到,获得积分10
30秒前
31秒前
折木浮华完成签到,获得积分10
31秒前
缥缈的又亦完成签到,获得积分10
33秒前
追寻如豹发布了新的文献求助10
34秒前
可可杨发布了新的文献求助10
36秒前
韩涵发布了新的文献求助10
36秒前
36秒前
36秒前
传奇3应助zxzuam采纳,获得10
41秒前
冰bing完成签到,获得积分10
43秒前
李健应助科研通管家采纳,获得10
44秒前
我是老大应助科研通管家采纳,获得10
44秒前
完美世界应助科研通管家采纳,获得30
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161515
求助须知:如何正确求助?哪些是违规求助? 2812855
关于积分的说明 7897372
捐赠科研通 2471768
什么是DOI,文献DOI怎么找? 1316137
科研通“疑难数据库(出版商)”最低求助积分说明 631193
版权声明 602112