Mapping cropland rice residue cover using a radiative transfer model and deep learning

环境科学 作物残渣 遥感 覆盖作物 含水量 土壤科学 残留物(化学) 作物 水分 农业工程 农学 农业 农林复合经营 地质学 化学 气象学 工程类 地理 生物化学 岩土工程 考古 生物
作者
Jibo Yue,Qingjiu Tian,Yang Liu,Yuanyuan Fu,Jia Tian,Chengquan Zhou,Haikuan Feng,Guijun Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108421-108421 被引量:4
标识
DOI:10.1016/j.compag.2023.108421
摘要

Accurate determination of rice residue cover (RRC) can improve the monitoring of tillage information. Currently, the accurate determination of RRC using optical remote sensing is hindered by variations in cropland moisture and cover of following crops. The fractional cover (FC) of the soil (fS), crop (fC), and crop residue (fCR) changes (fS + fC + fCR = 1) after the following crop is planted, which increases the difficulty of remote-sensing RRC estimation. Cropland soil moisture and crop residue moisture affect the values of cropland and crop residue spectral indices (CRSIs), thereby reducing the accuracy of remote-sensing RRC estimation. Deep learning techniques (e.g., convolutional neural networks [CNN] and transfer learning [TL]) have been proven to extract the deep features of input images with distortion invariance, such as displacement and scaling, which are similar to moisture and the following crop effects on remote-sensing CRSIs. This study aimed to evaluate the combined use of deep features of cropland spectra extracted by deep learning techniques to estimate the cropland RRC under the effects of variations in cropland moisture and cover of the following crops. This study proposes an RRCNet CNN that fuses deep and shallow features to improve RRC estimation. A PROSAIL radiative transfer model was employed to simulate a cropland "soil–crop–crop residue" mixed spectra dataset (n = 103,068), considering the variations in cropland moisture and the cover of the following crop. The RRCNet was first pre-trained using the simulated dataset, and then the knowledge from the pre-trained RRCNet was updated based on field experimental FCs, RRCs, and Sentinel-2 image spectra using the TL technique. Our study indicates that RRCNet can incorporate shallow and deep spectral features of cropland "soil–crop–crop residue" mixed spectra, providing high-performance FCs and RRC estimation. The FCs and RRC estimates from RRCNet + TL (FCs: R2 = 0.939, root mean squared error (RMSE) = 0.071; RRC: R2 = 0.891, RMSE = 0.083) were more accurate than those from CRSI + multiple linear regression, CRSI + random forest, and CRSI + support vector machine (FCs: R2 = 0.877–907, RMSE = 0.086–0.101; RRC: R2 = 0.378–0.714, RMSE = 0.133–0.229). We mapped the multistage RRC based on Sentinel-2 multispectral instrument (MSI) images and RRCNet. Tillage information can be inferred from RRC and RRC difference maps changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助谨慎的涫采纳,获得10
1秒前
Xiaoxiao应助早起的川123采纳,获得10
2秒前
JamesPei应助gngxnh采纳,获得10
2秒前
2秒前
4秒前
5秒前
6秒前
塔塔发布了新的文献求助10
7秒前
1234发布了新的文献求助10
8秒前
龚成明发布了新的文献求助10
9秒前
吱吱完成签到,获得积分10
9秒前
弗兰克多完成签到,获得积分10
9秒前
结实红酒发布了新的文献求助10
10秒前
吱吱发布了新的文献求助10
11秒前
11秒前
sinewaves完成签到,获得积分10
12秒前
焰火在完成签到,获得积分10
12秒前
科研通AI5应助wing采纳,获得30
13秒前
VUlcna应助lh采纳,获得10
14秒前
14秒前
幽默小白菜完成签到,获得积分10
14秒前
Ono完成签到,获得积分10
14秒前
15秒前
阿花完成签到 ,获得积分10
16秒前
斯文败类应助小情绪采纳,获得10
16秒前
16秒前
萌宠完成签到,获得积分10
16秒前
茉莉香片完成签到,获得积分10
17秒前
猪猪hero发布了新的文献求助10
17秒前
夏哈哈发布了新的文献求助10
17秒前
18秒前
18秒前
香蕉觅云应助快乐的蓝采纳,获得10
18秒前
微笑可乐关注了科研通微信公众号
19秒前
无花果应助无奈的书琴采纳,获得10
19秒前
19秒前
FashionBoy应助浪里白条采纳,获得10
19秒前
研友_txj发布了新的文献求助10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515890
求助须知:如何正确求助?哪些是违规求助? 3098083
关于积分的说明 9237912
捐赠科研通 2793061
什么是DOI,文献DOI怎么找? 1532791
邀请新用户注册赠送积分活动 712304
科研通“疑难数据库(出版商)”最低求助积分说明 707256