STCP: Synergistic Transformer and Convolutional Neural Network for Pansharpening

全色胶片 多光谱图像 计算机科学 特征提取 卷积神经网络 人工智能 模式识别(心理学) 特征(语言学) 图像分辨率 计算机视觉 哲学 语言学
作者
Zhao Su,Yong Yang,Shuying Huang,Weiguo Wan,Jiancheng Sun,Wei Tu,Changjie Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2023.3320954
摘要

Pansharpening is a process of fusing a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to obtain a high-resolution multispectral (HRMS) image. Convolutional neural networks (CNNs) have been commonly utilized in this field because of their remarkable learning capabilities. However, their convolutional operators limit the long-range feature extraction ability of CNN. Meanwhile, the Transformer models have exhibited strong capabilities in modeling long-range representations, but there are shortcomings in modeling local-range feature dependencies. To this end, we propose a novel synergistic transformer and CNN for pansharpening (STCP). First, a parallel U-shaped feature extraction module (PUFEM) is constructed for extracting the features of the LRMS and PAN images, which improves the feature representation ability for the two source images. In the PUFEM, combining the different feature learning capabilities of the CNN and transformer, we design a long-short-range feature integration block (LSFIB) to extract the short-range features and long-range features at different scales in parallel. Then, a channel attention module (CAM)-based feature fusion module (CFFM) is constructed to integrate the features extracted by the PUFEM. Finally, the shallow features from the PAN image are reused to provide detailed features, which are integrated with the fused features from the CFFM to achieve the final pansharpened results. Numerous experiments show that our STCP outperforms some state-of-the-art approaches both subjectively and objectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助无与伦比采纳,获得10
2秒前
早点睡觉发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
6秒前
6秒前
xiaoxue完成签到 ,获得积分10
6秒前
爱吃烤苕皮完成签到,获得积分10
6秒前
比目鱼发布了新的文献求助10
6秒前
一叶知秋发布了新的文献求助10
7秒前
可爱的函函应助苏志鹏采纳,获得10
9秒前
han发布了新的文献求助10
9秒前
PKQ完成签到,获得积分10
9秒前
xxme77发布了新的文献求助10
10秒前
liangyueru完成签到,获得积分10
10秒前
12秒前
一进实验室就犯困完成签到,获得积分10
12秒前
淡淡人英发布了新的文献求助10
13秒前
13秒前
邓邓完成签到,获得积分10
14秒前
15秒前
小蘑菇应助尔风采纳,获得30
15秒前
雪糕发布了新的文献求助10
17秒前
17秒前
orixero应助一叶知秋采纳,获得10
17秒前
星辰大海应助潦草采纳,获得10
17秒前
苏志鹏发布了新的文献求助10
18秒前
局内人发布了新的文献求助10
18秒前
顾矜应助neko采纳,获得10
19秒前
曹沛岚完成签到,获得积分10
19秒前
慕青应助满意霆采纳,获得10
20秒前
20秒前
张小毛发布了新的文献求助10
20秒前
20秒前
xxme77完成签到,获得积分10
21秒前
龙痕完成签到,获得积分10
21秒前
msl2023完成签到,获得积分10
22秒前
若枫完成签到,获得积分10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295866
求助须知:如何正确求助?哪些是违规求助? 2931755
关于积分的说明 8453560
捐赠科研通 2604360
什么是DOI,文献DOI怎么找? 1421654
科研通“疑难数据库(出版商)”最低求助积分说明 661074
邀请新用户注册赠送积分活动 644023