已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

STCP: Synergistic Transformer and Convolutional Neural Network for Pansharpening

全色胶片 多光谱图像 计算机科学 特征提取 卷积神经网络 人工智能 模式识别(心理学) 特征(语言学) 图像分辨率 计算机视觉 哲学 语言学
作者
Zhao Su,Yong Yang,Shuying Huang,Weiguo Wan,Jiancheng Sun,Wei Tu,Changjie Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2023.3320954
摘要

Pansharpening is a process of fusing a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to obtain a high-resolution multispectral (HRMS) image. Convolutional neural networks (CNNs) have been commonly utilized in this field because of their remarkable learning capabilities. However, their convolutional operators limit the long-range feature extraction ability of CNN. Meanwhile, the Transformer models have exhibited strong capabilities in modeling long-range representations, but there are shortcomings in modeling local-range feature dependencies. To this end, we propose a novel synergistic transformer and CNN for pansharpening (STCP). First, a parallel U-shaped feature extraction module (PUFEM) is constructed for extracting the features of the LRMS and PAN images, which improves the feature representation ability for the two source images. In the PUFEM, combining the different feature learning capabilities of the CNN and transformer, we design a long-short-range feature integration block (LSFIB) to extract the short-range features and long-range features at different scales in parallel. Then, a channel attention module (CAM)-based feature fusion module (CFFM) is constructed to integrate the features extracted by the PUFEM. Finally, the shallow features from the PAN image are reused to provide detailed features, which are integrated with the fused features from the CFFM to achieve the final pansharpened results. Numerous experiments show that our STCP outperforms some state-of-the-art approaches both subjectively and objectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
。。发布了新的文献求助10
2秒前
rui关闭了rui文献求助
2秒前
rui关闭了rui文献求助
2秒前
大模型应助wang采纳,获得10
3秒前
汤泡泡发布了新的文献求助10
3秒前
jj发布了新的文献求助10
3秒前
李健应助调皮帆布鞋采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
赘婿应助jj采纳,获得10
8秒前
Qaz完成签到,获得积分20
9秒前
在水一方应助tleeny采纳,获得10
9秒前
10秒前
11秒前
oooo发布了新的文献求助10
12秒前
充电宝应助。。采纳,获得10
13秒前
wang发布了新的文献求助10
14秒前
多多鱼完成签到 ,获得积分10
16秒前
CodeCraft应助guoguo采纳,获得10
16秒前
豆豆突发布了新的文献求助10
16秒前
楠楠发布了新的文献求助10
17秒前
英俊的铭应助积极的老鼠采纳,获得10
17秒前
赵泳行完成签到,获得积分20
17秒前
自信人生二百年完成签到,获得积分10
17秒前
18秒前
王振辉发布了新的文献求助10
18秒前
爱笑的羊青完成签到,获得积分10
20秒前
pluto应助xiongzi采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595408
求助须知:如何正确求助?哪些是违规求助? 4680704
关于积分的说明 14817078
捐赠科研通 4649908
什么是DOI,文献DOI怎么找? 2535433
邀请新用户注册赠送积分活动 1503339
关于科研通互助平台的介绍 1469613