STCP: Synergistic Transformer and Convolutional Neural Network for Pansharpening

全色胶片 多光谱图像 计算机科学 特征提取 卷积神经网络 人工智能 模式识别(心理学) 特征(语言学) 图像分辨率 计算机视觉 哲学 语言学
作者
Zhao Su,Yong Yang,Shuying Huang,Weiguo Wan,Jiancheng Sun,Wei Tu,Changjie Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2023.3320954
摘要

Pansharpening is a process of fusing a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to obtain a high-resolution multispectral (HRMS) image. Convolutional neural networks (CNNs) have been commonly utilized in this field because of their remarkable learning capabilities. However, their convolutional operators limit the long-range feature extraction ability of CNN. Meanwhile, the Transformer models have exhibited strong capabilities in modeling long-range representations, but there are shortcomings in modeling local-range feature dependencies. To this end, we propose a novel synergistic transformer and CNN for pansharpening (STCP). First, a parallel U-shaped feature extraction module (PUFEM) is constructed for extracting the features of the LRMS and PAN images, which improves the feature representation ability for the two source images. In the PUFEM, combining the different feature learning capabilities of the CNN and transformer, we design a long-short-range feature integration block (LSFIB) to extract the short-range features and long-range features at different scales in parallel. Then, a channel attention module (CAM)-based feature fusion module (CFFM) is constructed to integrate the features extracted by the PUFEM. Finally, the shallow features from the PAN image are reused to provide detailed features, which are integrated with the fused features from the CFFM to achieve the final pansharpened results. Numerous experiments show that our STCP outperforms some state-of-the-art approaches both subjectively and objectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助无情的南琴采纳,获得10
刚刚
科研小趴菜完成签到,获得积分10
1秒前
1秒前
Xzmmmm发布了新的文献求助50
1秒前
单薄凌蝶发布了新的文献求助10
2秒前
天天快乐应助张艺馨采纳,获得10
2秒前
科研通AI6应助何1采纳,获得10
2秒前
fei完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Jack完成签到,获得积分10
3秒前
跳跃的雪珊完成签到 ,获得积分10
4秒前
科研通AI6应助凉小远采纳,获得10
4秒前
奋斗诗云完成签到 ,获得积分10
4秒前
Jasper应助小杭76采纳,获得10
4秒前
4秒前
John完成签到,获得积分10
5秒前
Zirush发布了新的文献求助10
5秒前
刘子田完成签到,获得积分10
6秒前
Jacky完成签到,获得积分10
6秒前
6秒前
starr完成签到 ,获得积分10
6秒前
mzm应助ligy采纳,获得50
6秒前
机械霜完成签到,获得积分10
7秒前
北挽发布了新的文献求助10
7秒前
小茗发布了新的文献求助10
7秒前
单薄凌蝶完成签到,获得积分10
8秒前
8秒前
刘子田发布了新的文献求助10
8秒前
愉快迎荷发布了新的文献求助10
8秒前
9秒前
陈叉叉完成签到 ,获得积分10
9秒前
康康完成签到 ,获得积分10
9秒前
10秒前
研友_VZG7GZ应助123木头人采纳,获得10
10秒前
隐形曼青应助玥越采纳,获得10
10秒前
LHQ完成签到 ,获得积分10
10秒前
w_完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477844
求助须知:如何正确求助?哪些是违规求助? 4579685
关于积分的说明 14369630
捐赠科研通 4507897
什么是DOI,文献DOI怎么找? 2470257
邀请新用户注册赠送积分活动 1457152
关于科研通互助平台的介绍 1431066