清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

STCP: Synergistic Transformer and Convolutional Neural Network for Pansharpening

全色胶片 多光谱图像 计算机科学 特征提取 卷积神经网络 人工智能 模式识别(心理学) 特征(语言学) 图像分辨率 计算机视觉 哲学 语言学
作者
Zhao Su,Yong Yang,Shuying Huang,Weiguo Wan,Jiancheng Sun,Wei Tu,Changjie Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2023.3320954
摘要

Pansharpening is a process of fusing a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to obtain a high-resolution multispectral (HRMS) image. Convolutional neural networks (CNNs) have been commonly utilized in this field because of their remarkable learning capabilities. However, their convolutional operators limit the long-range feature extraction ability of CNN. Meanwhile, the Transformer models have exhibited strong capabilities in modeling long-range representations, but there are shortcomings in modeling local-range feature dependencies. To this end, we propose a novel synergistic transformer and CNN for pansharpening (STCP). First, a parallel U-shaped feature extraction module (PUFEM) is constructed for extracting the features of the LRMS and PAN images, which improves the feature representation ability for the two source images. In the PUFEM, combining the different feature learning capabilities of the CNN and transformer, we design a long-short-range feature integration block (LSFIB) to extract the short-range features and long-range features at different scales in parallel. Then, a channel attention module (CAM)-based feature fusion module (CFFM) is constructed to integrate the features extracted by the PUFEM. Finally, the shallow features from the PAN image are reused to provide detailed features, which are integrated with the fused features from the CFFM to achieve the final pansharpened results. Numerous experiments show that our STCP outperforms some state-of-the-art approaches both subjectively and objectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
1分钟前
thhabc关注了科研通微信公众号
1分钟前
1分钟前
thhabc发布了新的文献求助50
1分钟前
1分钟前
1分钟前
cxy完成签到 ,获得积分10
1分钟前
1分钟前
飘逸的山柏完成签到 ,获得积分10
2分钟前
QCB完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
yindi1991完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI6应助WW采纳,获得10
4分钟前
共享精神应助xiaxia采纳,获得50
5分钟前
5分钟前
5分钟前
TenerifeSea发布了新的文献求助10
5分钟前
6分钟前
6分钟前
xiaxia发布了新的文献求助50
6分钟前
6分钟前
whj完成签到 ,获得积分10
7分钟前
7分钟前
火星上惜天完成签到 ,获得积分10
7分钟前
华仔应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
bkagyin应助zzt采纳,获得10
8分钟前
CodeCraft应助敏敏9813采纳,获得10
8分钟前
李健的小迷弟应助孟繁荣采纳,获得10
8分钟前
8分钟前
孟繁荣发布了新的文献求助10
8分钟前
汉堡包应助xiaxia采纳,获得30
8分钟前
jun完成签到,获得积分10
9分钟前
9分钟前
9分钟前
9分钟前
糟糕的翅膀完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918268
求助须知:如何正确求助?哪些是违规求助? 4190933
关于积分的说明 13015499
捐赠科研通 3960752
什么是DOI,文献DOI怎么找? 2171367
邀请新用户注册赠送积分活动 1189396
关于科研通互助平台的介绍 1097809