Multi-task Joint Prediction of Infant Cortical Morphological and Cognitive Development

认知 计算机科学 自编码 接头(建筑物) 身份(音乐) 任务(项目管理) 人工智能 对抗制 认知发展 神经影像学 认知心理学 机器学习 心理学 深度学习 神经科学 建筑工程 物理 管理 声学 工程类 经济
作者
Xinrui Yuan,Jiale Cheng,Fenqiang Zhao,Zhengwang Wu,Li Wang,Weili Lin,Yu Zhang,Gang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 545-554
标识
DOI:10.1007/978-3-031-43996-4_52
摘要

During the early postnatal period, the human brain undergoes rapid and dynamic development. Over the past decades, there has been increased attention in studying the cognitive and cortical development of infants. However, accurate prediction of the infant cognitive and cortical development at an individual-level is a significant challenge, due to the huge complexities in highly irregular and incomplete longitudinal data that is commonly seen in current studies. Besides, joint prediction of cognitive scores and cortical morphology is barely investigated, despite some studies revealing the tight relationship between cognitive ability and cortical morphology and suggesting their potential mutual benefits. To tackle this challenge, we develop a flexible multi-task framework for joint prediction of cognitive scores and cortical morphological maps, namely, disentangled intensive triplet spherical adversarial autoencoder (DITSAA). First, we extract the mixed representative latent vector through a triplet spherical ResNet and further disentangles latent vector into identity-related and age-related features with an attention-based module. The identity recognition and age estimation tasks are introduced as supervision for a reliable disentanglement of the two components. Then we formulate the individualized cortical profile at a specific age by combining disentangled identity-related information and corresponding age-related information. Finally, an adversarial learning strategy is integrated to achieve a vivid and realistic prediction of cortical morphology, while a cognitive module is employed to predict cognitive scores. Extensive experiments are conducted on a public dataset, and the results affirm our method’s ability to predict cognitive scores and cortical morphology jointly and flexibly using incomplete longitudinal data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiny8417完成签到,获得积分10
2秒前
苏以禾完成签到 ,获得积分10
2秒前
又又完成签到 ,获得积分10
3秒前
4秒前
mickiller完成签到,获得积分10
5秒前
drtianyunhong完成签到,获得积分10
5秒前
我爱科研完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
韩明轩完成签到 ,获得积分10
6秒前
6秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
8秒前
zl完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助10
10秒前
等待的代容完成签到,获得积分10
11秒前
Sunny完成签到 ,获得积分10
12秒前
酸菜鱼火锅发布了新的文献求助150
14秒前
廉泽完成签到,获得积分10
15秒前
灵巧夏彤完成签到 ,获得积分10
15秒前
奋斗雅香完成签到 ,获得积分10
16秒前
无脚鸟完成签到,获得积分10
18秒前
快乐的故事完成签到,获得积分10
18秒前
丰富的白开水完成签到,获得积分10
19秒前
曹博完成签到,获得积分10
20秒前
20秒前
那时年少完成签到,获得积分10
21秒前
yurunxintian发布了新的文献求助30
21秒前
Jerry完成签到,获得积分10
21秒前
虚幻绿兰完成签到,获得积分10
22秒前
22秒前
锦慜完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
懵懂的钢笔完成签到 ,获得积分10
25秒前
回来完成签到,获得积分10
26秒前
shtatbf应助科研通管家采纳,获得10
27秒前
酸菜鱼火锅完成签到,获得积分10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
shtatbf应助科研通管家采纳,获得10
27秒前
chiazy完成签到,获得积分10
27秒前
安安应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858