Multi-task Joint Prediction of Infant Cortical Morphological and Cognitive Development

认知 计算机科学 自编码 接头(建筑物) 身份(音乐) 任务(项目管理) 人工智能 对抗制 认知发展 神经影像学 认知心理学 机器学习 心理学 深度学习 神经科学 物理 工程类 经济 建筑工程 管理 声学
作者
Xinrui Yuan,Jiale Cheng,Fenqiang Zhao,Zhengwang Wu,Li Wang,Weili Lin,Yu Zhang,Gang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 545-554
标识
DOI:10.1007/978-3-031-43996-4_52
摘要

During the early postnatal period, the human brain undergoes rapid and dynamic development. Over the past decades, there has been increased attention in studying the cognitive and cortical development of infants. However, accurate prediction of the infant cognitive and cortical development at an individual-level is a significant challenge, due to the huge complexities in highly irregular and incomplete longitudinal data that is commonly seen in current studies. Besides, joint prediction of cognitive scores and cortical morphology is barely investigated, despite some studies revealing the tight relationship between cognitive ability and cortical morphology and suggesting their potential mutual benefits. To tackle this challenge, we develop a flexible multi-task framework for joint prediction of cognitive scores and cortical morphological maps, namely, disentangled intensive triplet spherical adversarial autoencoder (DITSAA). First, we extract the mixed representative latent vector through a triplet spherical ResNet and further disentangles latent vector into identity-related and age-related features with an attention-based module. The identity recognition and age estimation tasks are introduced as supervision for a reliable disentanglement of the two components. Then we formulate the individualized cortical profile at a specific age by combining disentangled identity-related information and corresponding age-related information. Finally, an adversarial learning strategy is integrated to achieve a vivid and realistic prediction of cortical morphology, while a cognitive module is employed to predict cognitive scores. Extensive experiments are conducted on a public dataset, and the results affirm our method’s ability to predict cognitive scores and cortical morphology jointly and flexibly using incomplete longitudinal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ym采纳,获得20
刚刚
刚刚
代代完成签到,获得积分10
刚刚
关我屁事完成签到 ,获得积分10
刚刚
酷炫半蕾发布了新的文献求助10
1秒前
1秒前
FashionBoy应助漂亮的孤风采纳,获得10
1秒前
电灯胆关注了科研通微信公众号
2秒前
Joker发布了新的文献求助10
2秒前
从容不乐发布了新的文献求助20
2秒前
英俊的铭应助lienafeihu采纳,获得10
2秒前
dreamboat发布了新的文献求助10
2秒前
2秒前
zz完成签到,获得积分10
2秒前
MCQ发布了新的文献求助20
2秒前
2秒前
天天快乐应助congyjs采纳,获得10
3秒前
朴实珍应助芒果采纳,获得20
3秒前
3秒前
Hello应助犬狗狗采纳,获得10
3秒前
shen发布了新的文献求助10
4秒前
研友_LNVX1L完成签到,获得积分10
4秒前
小肥羊完成签到 ,获得积分10
4秒前
xxfsx应助maaicui采纳,获得10
5秒前
毛毛弟完成签到 ,获得积分10
5秒前
解语花发布了新的文献求助150
6秒前
kinoko完成签到,获得积分10
6秒前
6秒前
陈宇通发布了新的文献求助10
7秒前
xchi发布了新的文献求助10
7秒前
Rouadou完成签到 ,获得积分10
7秒前
勤劳平彤发布了新的文献求助10
7秒前
Lucas应助姜秀芳采纳,获得10
7秒前
磊少发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
MXX发布了新的文献求助10
9秒前
研究生end应助XXX采纳,获得30
9秒前
小盛发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5168225
求助须知:如何正确求助?哪些是违规求助? 4359995
关于积分的说明 13574748
捐赠科研通 4206589
什么是DOI,文献DOI怎么找? 2307028
邀请新用户注册赠送积分活动 1306622
关于科研通互助平台的介绍 1253263