亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-task Joint Prediction of Infant Cortical Morphological and Cognitive Development

认知 计算机科学 自编码 接头(建筑物) 身份(音乐) 任务(项目管理) 人工智能 对抗制 认知发展 神经影像学 认知心理学 机器学习 心理学 深度学习 神经科学 建筑工程 物理 管理 声学 工程类 经济
作者
Xinrui Yuan,Jiale Cheng,Fenqiang Zhao,Zhengwang Wu,Li Wang,Weili Lin,Yu Zhang,Gang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 545-554
标识
DOI:10.1007/978-3-031-43996-4_52
摘要

During the early postnatal period, the human brain undergoes rapid and dynamic development. Over the past decades, there has been increased attention in studying the cognitive and cortical development of infants. However, accurate prediction of the infant cognitive and cortical development at an individual-level is a significant challenge, due to the huge complexities in highly irregular and incomplete longitudinal data that is commonly seen in current studies. Besides, joint prediction of cognitive scores and cortical morphology is barely investigated, despite some studies revealing the tight relationship between cognitive ability and cortical morphology and suggesting their potential mutual benefits. To tackle this challenge, we develop a flexible multi-task framework for joint prediction of cognitive scores and cortical morphological maps, namely, disentangled intensive triplet spherical adversarial autoencoder (DITSAA). First, we extract the mixed representative latent vector through a triplet spherical ResNet and further disentangles latent vector into identity-related and age-related features with an attention-based module. The identity recognition and age estimation tasks are introduced as supervision for a reliable disentanglement of the two components. Then we formulate the individualized cortical profile at a specific age by combining disentangled identity-related information and corresponding age-related information. Finally, an adversarial learning strategy is integrated to achieve a vivid and realistic prediction of cortical morphology, while a cognitive module is employed to predict cognitive scores. Extensive experiments are conducted on a public dataset, and the results affirm our method’s ability to predict cognitive scores and cortical morphology jointly and flexibly using incomplete longitudinal data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC发布了新的文献求助10
3秒前
陈梓锋完成签到 ,获得积分10
7秒前
10秒前
yyds完成签到,获得积分0
13秒前
asd完成签到 ,获得积分10
13秒前
14秒前
xlxu发布了新的文献求助10
17秒前
张萌发布了新的文献求助10
18秒前
22秒前
vida完成签到 ,获得积分10
23秒前
仰勒完成签到 ,获得积分10
26秒前
山川日月完成签到,获得积分10
26秒前
懒骨头兄发布了新的文献求助10
27秒前
猫猫祟完成签到 ,获得积分10
32秒前
点点点完成签到 ,获得积分10
38秒前
拼搏向上完成签到,获得积分10
38秒前
inyh59完成签到,获得积分10
39秒前
42秒前
刻苦的溪流完成签到,获得积分10
44秒前
44秒前
sofia发布了新的文献求助10
45秒前
大壮发布了新的文献求助10
47秒前
科目三应助inyh59采纳,获得10
48秒前
shimly0101xx发布了新的文献求助10
49秒前
xyy完成签到,获得积分20
51秒前
Hello应助samsijyu采纳,获得10
52秒前
Lulu完成签到 ,获得积分10
57秒前
summer完成签到 ,获得积分10
57秒前
59秒前
情怀应助cc采纳,获得10
1分钟前
透彻含义发布了新的文献求助10
1分钟前
科研通AI6应助无限猫咪采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
sss完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701328
关于积分的说明 14913361
捐赠科研通 4747615
什么是DOI,文献DOI怎么找? 2549174
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049