Multi-task Joint Prediction of Infant Cortical Morphological and Cognitive Development

认知 计算机科学 自编码 接头(建筑物) 身份(音乐) 任务(项目管理) 人工智能 对抗制 认知发展 神经影像学 认知心理学 机器学习 心理学 深度学习 神经科学 建筑工程 物理 管理 声学 工程类 经济
作者
Xinrui Yuan,Jiale Cheng,Fenqiang Zhao,Zhengwang Wu,Li Wang,Weili Lin,Yu Zhang,Gang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 545-554
标识
DOI:10.1007/978-3-031-43996-4_52
摘要

During the early postnatal period, the human brain undergoes rapid and dynamic development. Over the past decades, there has been increased attention in studying the cognitive and cortical development of infants. However, accurate prediction of the infant cognitive and cortical development at an individual-level is a significant challenge, due to the huge complexities in highly irregular and incomplete longitudinal data that is commonly seen in current studies. Besides, joint prediction of cognitive scores and cortical morphology is barely investigated, despite some studies revealing the tight relationship between cognitive ability and cortical morphology and suggesting their potential mutual benefits. To tackle this challenge, we develop a flexible multi-task framework for joint prediction of cognitive scores and cortical morphological maps, namely, disentangled intensive triplet spherical adversarial autoencoder (DITSAA). First, we extract the mixed representative latent vector through a triplet spherical ResNet and further disentangles latent vector into identity-related and age-related features with an attention-based module. The identity recognition and age estimation tasks are introduced as supervision for a reliable disentanglement of the two components. Then we formulate the individualized cortical profile at a specific age by combining disentangled identity-related information and corresponding age-related information. Finally, an adversarial learning strategy is integrated to achieve a vivid and realistic prediction of cortical morphology, while a cognitive module is employed to predict cognitive scores. Extensive experiments are conducted on a public dataset, and the results affirm our method’s ability to predict cognitive scores and cortical morphology jointly and flexibly using incomplete longitudinal data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笃定发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
WangJ1018发布了新的文献求助10
2秒前
阿迪发布了新的文献求助10
2秒前
Ivoir完成签到,获得积分10
2秒前
Glufo完成签到,获得积分10
3秒前
sg123_完成签到,获得积分20
3秒前
深情安青应助张潇潇采纳,获得10
3秒前
795836发布了新的文献求助10
3秒前
3秒前
3秒前
JamesPei应助欣喜的嘉熙采纳,获得10
4秒前
4秒前
zard给zard的求助进行了留言
4秒前
4秒前
5秒前
5秒前
神勇的草莓完成签到,获得积分10
5秒前
6秒前
6秒前
刘兵倩发布了新的文献求助10
6秒前
XIXI发布了新的文献求助30
6秒前
科研王完成签到 ,获得积分10
6秒前
杨杨完成签到,获得积分10
6秒前
6秒前
无畏山海发布了新的文献求助10
7秒前
姚依林发布了新的文献求助10
7秒前
慈祥的爆米花完成签到,获得积分10
7秒前
yanchen完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
lllous完成签到,获得积分10
8秒前
坦率白萱发布了新的文献求助10
9秒前
NexusExplorer应助刻痕采纳,获得10
9秒前
9秒前
FBI完成签到,获得积分10
10秒前
YK发布了新的文献求助10
10秒前
鲤角兽完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609726
求助须知:如何正确求助?哪些是违规求助? 4694294
关于积分的说明 14881987
捐赠科研通 4720227
什么是DOI,文献DOI怎么找? 2544836
邀请新用户注册赠送积分活动 1509735
关于科研通互助平台的介绍 1472996