Multi-task Joint Prediction of Infant Cortical Morphological and Cognitive Development

认知 计算机科学 自编码 接头(建筑物) 身份(音乐) 任务(项目管理) 人工智能 对抗制 认知发展 神经影像学 认知心理学 机器学习 心理学 深度学习 神经科学 物理 工程类 经济 建筑工程 管理 声学
作者
Xinrui Yuan,Jiale Cheng,Fenqiang Zhao,Zhengwang Wu,Li Wang,Weili Lin,Yu Zhang,Gang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 545-554
标识
DOI:10.1007/978-3-031-43996-4_52
摘要

During the early postnatal period, the human brain undergoes rapid and dynamic development. Over the past decades, there has been increased attention in studying the cognitive and cortical development of infants. However, accurate prediction of the infant cognitive and cortical development at an individual-level is a significant challenge, due to the huge complexities in highly irregular and incomplete longitudinal data that is commonly seen in current studies. Besides, joint prediction of cognitive scores and cortical morphology is barely investigated, despite some studies revealing the tight relationship between cognitive ability and cortical morphology and suggesting their potential mutual benefits. To tackle this challenge, we develop a flexible multi-task framework for joint prediction of cognitive scores and cortical morphological maps, namely, disentangled intensive triplet spherical adversarial autoencoder (DITSAA). First, we extract the mixed representative latent vector through a triplet spherical ResNet and further disentangles latent vector into identity-related and age-related features with an attention-based module. The identity recognition and age estimation tasks are introduced as supervision for a reliable disentanglement of the two components. Then we formulate the individualized cortical profile at a specific age by combining disentangled identity-related information and corresponding age-related information. Finally, an adversarial learning strategy is integrated to achieve a vivid and realistic prediction of cortical morphology, while a cognitive module is employed to predict cognitive scores. Extensive experiments are conducted on a public dataset, and the results affirm our method’s ability to predict cognitive scores and cortical morphology jointly and flexibly using incomplete longitudinal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LI完成签到,获得积分10
刚刚
苦命吗喽发布了新的文献求助10
1秒前
tcc完成签到,获得积分10
1秒前
标致绮露发布了新的文献求助10
2秒前
玄黄大世界完成签到,获得积分10
2秒前
tcc给tcc的求助进行了留言
3秒前
Akim应助风中的丝袜采纳,获得10
5秒前
小二郎应助风中的丝袜采纳,获得30
5秒前
可爱的函函应助张龙雨采纳,获得10
5秒前
天天快乐应助风中的丝袜采纳,获得10
5秒前
FashionBoy应助风中的丝袜采纳,获得10
5秒前
谨慎的代云给谨慎的代云的求助进行了留言
6秒前
7秒前
mariawang发布了新的文献求助10
8秒前
10秒前
11秒前
dong应助王维采纳,获得10
11秒前
完美世界应助大方谷梦采纳,获得30
12秒前
阿槿发布了新的文献求助10
13秒前
乐乐应助飞宇采纳,获得10
13秒前
ocean发布了新的文献求助10
14秒前
14秒前
lcy完成签到,获得积分10
15秒前
英吉利25发布了新的文献求助10
15秒前
木展子发布了新的文献求助10
15秒前
汉堡包应助迷路冰兰采纳,获得10
16秒前
CipherSage应助Firmino采纳,获得30
16秒前
17秒前
朴素的松鼠应助朱光辉采纳,获得10
17秒前
朴素的松鼠应助朱光辉采纳,获得10
17秒前
18秒前
yzm发布了新的文献求助10
18秒前
20秒前
20秒前
21秒前
回忆都是负荷完成签到,获得积分10
24秒前
诚心太君发布了新的文献求助10
25秒前
邱型程发布了新的文献求助10
26秒前
大个应助海藻采纳,获得10
26秒前
木展子完成签到,获得积分20
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959705
求助须知:如何正确求助?哪些是违规求助? 3505951
关于积分的说明 11127133
捐赠科研通 3237931
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871709
科研通“疑难数据库(出版商)”最低求助积分说明 802976