Multi-task Joint Prediction of Infant Cortical Morphological and Cognitive Development

认知 计算机科学 自编码 接头(建筑物) 身份(音乐) 任务(项目管理) 人工智能 对抗制 认知发展 神经影像学 认知心理学 机器学习 心理学 深度学习 神经科学 物理 工程类 经济 建筑工程 管理 声学
作者
Xinrui Yuan,Jiale Cheng,Fenqiang Zhao,Zhengwang Wu,Li Wang,Weili Lin,Yu Zhang,Gang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 545-554
标识
DOI:10.1007/978-3-031-43996-4_52
摘要

During the early postnatal period, the human brain undergoes rapid and dynamic development. Over the past decades, there has been increased attention in studying the cognitive and cortical development of infants. However, accurate prediction of the infant cognitive and cortical development at an individual-level is a significant challenge, due to the huge complexities in highly irregular and incomplete longitudinal data that is commonly seen in current studies. Besides, joint prediction of cognitive scores and cortical morphology is barely investigated, despite some studies revealing the tight relationship between cognitive ability and cortical morphology and suggesting their potential mutual benefits. To tackle this challenge, we develop a flexible multi-task framework for joint prediction of cognitive scores and cortical morphological maps, namely, disentangled intensive triplet spherical adversarial autoencoder (DITSAA). First, we extract the mixed representative latent vector through a triplet spherical ResNet and further disentangles latent vector into identity-related and age-related features with an attention-based module. The identity recognition and age estimation tasks are introduced as supervision for a reliable disentanglement of the two components. Then we formulate the individualized cortical profile at a specific age by combining disentangled identity-related information and corresponding age-related information. Finally, an adversarial learning strategy is integrated to achieve a vivid and realistic prediction of cortical morphology, while a cognitive module is employed to predict cognitive scores. Extensive experiments are conducted on a public dataset, and the results affirm our method’s ability to predict cognitive scores and cortical morphology jointly and flexibly using incomplete longitudinal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助婉君采纳,获得10
刚刚
十五发布了新的文献求助10
刚刚
hsj完成签到,获得积分10
刚刚
123发布了新的文献求助10
1秒前
1秒前
鲸鱼发布了新的文献求助10
2秒前
果汁有点甜完成签到,获得积分10
2秒前
Ava应助悲凉的孤萍采纳,获得10
2秒前
研友_ngqQE8完成签到,获得积分10
2秒前
2秒前
Master_Ye发布了新的文献求助10
2秒前
晚晚发布了新的文献求助10
2秒前
2秒前
2秒前
NexusExplorer应助现实的千万采纳,获得10
2秒前
杨先生给杨先生的求助进行了留言
2秒前
秧秧发布了新的文献求助10
3秒前
xqler发布了新的文献求助10
3秒前
XNM完成签到,获得积分10
4秒前
4秒前
4秒前
Patrick发布了新的文献求助20
4秒前
科研通AI5应助要增肥的樱采纳,获得10
4秒前
科研通AI6应助撒啊采纳,获得10
5秒前
5秒前
5秒前
科研通AI5应助destiny采纳,获得50
6秒前
刻苦的竺应助静默采纳,获得20
6秒前
6秒前
7秒前
英姑应助smart采纳,获得10
7秒前
缥缈雪碧发布了新的文献求助10
7秒前
123131发布了新的文献求助10
7秒前
李哈哈完成签到,获得积分10
7秒前
科研通AI5应助张晴采纳,获得10
7秒前
一杯月光完成签到,获得积分10
8秒前
Lylin发布了新的文献求助10
8秒前
8秒前
Ellis完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437