Multi-task Joint Prediction of Infant Cortical Morphological and Cognitive Development

认知 计算机科学 自编码 接头(建筑物) 身份(音乐) 任务(项目管理) 人工智能 对抗制 认知发展 神经影像学 认知心理学 机器学习 心理学 深度学习 神经科学 物理 工程类 经济 建筑工程 管理 声学
作者
Xinrui Yuan,Jiale Cheng,Fenqiang Zhao,Zhengwang Wu,Li Wang,Weili Lin,Yu Zhang,Gang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 545-554
标识
DOI:10.1007/978-3-031-43996-4_52
摘要

During the early postnatal period, the human brain undergoes rapid and dynamic development. Over the past decades, there has been increased attention in studying the cognitive and cortical development of infants. However, accurate prediction of the infant cognitive and cortical development at an individual-level is a significant challenge, due to the huge complexities in highly irregular and incomplete longitudinal data that is commonly seen in current studies. Besides, joint prediction of cognitive scores and cortical morphology is barely investigated, despite some studies revealing the tight relationship between cognitive ability and cortical morphology and suggesting their potential mutual benefits. To tackle this challenge, we develop a flexible multi-task framework for joint prediction of cognitive scores and cortical morphological maps, namely, disentangled intensive triplet spherical adversarial autoencoder (DITSAA). First, we extract the mixed representative latent vector through a triplet spherical ResNet and further disentangles latent vector into identity-related and age-related features with an attention-based module. The identity recognition and age estimation tasks are introduced as supervision for a reliable disentanglement of the two components. Then we formulate the individualized cortical profile at a specific age by combining disentangled identity-related information and corresponding age-related information. Finally, an adversarial learning strategy is integrated to achieve a vivid and realistic prediction of cortical morphology, while a cognitive module is employed to predict cognitive scores. Extensive experiments are conducted on a public dataset, and the results affirm our method’s ability to predict cognitive scores and cortical morphology jointly and flexibly using incomplete longitudinal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助陆嫣采纳,获得10
刚刚
1秒前
大个应助活泼的焱采纳,获得10
1秒前
今后应助123采纳,获得10
1秒前
素霓发布了新的文献求助30
2秒前
2秒前
怦然完成签到,获得积分10
3秒前
失眠的以蓝完成签到,获得积分20
3秒前
Dabaozi发布了新的文献求助10
3秒前
3秒前
3秒前
weilao发布了新的文献求助10
4秒前
HUO发布了新的文献求助10
4秒前
万能图书馆应助文闵采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
清晨牛完成签到,获得积分10
4秒前
江湖应助科研通管家采纳,获得20
5秒前
且慢应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
且慢应助科研通管家采纳,获得10
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
ln1111发布了新的文献求助10
5秒前
xxfsx应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
hh完成签到,获得积分10
6秒前
子车茗应助Wmmmmm采纳,获得30
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
飞快的逊发布了新的文献求助10
7秒前
8秒前
幽默的沁发布了新的文献求助10
8秒前
yuhangli完成签到,获得积分10
8秒前
9秒前
Dabaozi完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914