Multi-task Joint Prediction of Infant Cortical Morphological and Cognitive Development

认知 计算机科学 自编码 接头(建筑物) 身份(音乐) 任务(项目管理) 人工智能 对抗制 认知发展 神经影像学 认知心理学 机器学习 心理学 深度学习 神经科学 物理 工程类 经济 建筑工程 管理 声学
作者
Xinrui Yuan,Jiale Cheng,Fenqiang Zhao,Zhengwang Wu,Li Wang,Weili Lin,Yu Zhang,Gang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 545-554
标识
DOI:10.1007/978-3-031-43996-4_52
摘要

During the early postnatal period, the human brain undergoes rapid and dynamic development. Over the past decades, there has been increased attention in studying the cognitive and cortical development of infants. However, accurate prediction of the infant cognitive and cortical development at an individual-level is a significant challenge, due to the huge complexities in highly irregular and incomplete longitudinal data that is commonly seen in current studies. Besides, joint prediction of cognitive scores and cortical morphology is barely investigated, despite some studies revealing the tight relationship between cognitive ability and cortical morphology and suggesting their potential mutual benefits. To tackle this challenge, we develop a flexible multi-task framework for joint prediction of cognitive scores and cortical morphological maps, namely, disentangled intensive triplet spherical adversarial autoencoder (DITSAA). First, we extract the mixed representative latent vector through a triplet spherical ResNet and further disentangles latent vector into identity-related and age-related features with an attention-based module. The identity recognition and age estimation tasks are introduced as supervision for a reliable disentanglement of the two components. Then we formulate the individualized cortical profile at a specific age by combining disentangled identity-related information and corresponding age-related information. Finally, an adversarial learning strategy is integrated to achieve a vivid and realistic prediction of cortical morphology, while a cognitive module is employed to predict cognitive scores. Extensive experiments are conducted on a public dataset, and the results affirm our method’s ability to predict cognitive scores and cortical morphology jointly and flexibly using incomplete longitudinal data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独幻柏发布了新的文献求助10
刚刚
哈哈完成签到,获得积分10
1秒前
共享精神应助wefs采纳,获得10
1秒前
1秒前
乐乐应助学术牛马采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
NICAI应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
NICAI应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
NICAI应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
xzy998应助科研通管家采纳,获得10
3秒前
3秒前
NICAI应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
干净的人达完成签到 ,获得积分10
4秒前
简单完成签到,获得积分10
4秒前
4秒前
酷波er应助不舍天真采纳,获得10
5秒前
学术裁缝完成签到,获得积分10
5秒前
爱笑的从蕾完成签到,获得积分10
5秒前
在水一方应助家里没有猫采纳,获得10
5秒前
幸福糖豆完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551713
求助须知:如何正确求助?哪些是违规求助? 4636568
关于积分的说明 14644524
捐赠科研通 4578430
什么是DOI,文献DOI怎么找? 2510815
邀请新用户注册赠送积分活动 1486102
关于科研通互助平台的介绍 1457449