Multi-task Joint Prediction of Infant Cortical Morphological and Cognitive Development

认知 计算机科学 自编码 接头(建筑物) 身份(音乐) 任务(项目管理) 人工智能 对抗制 认知发展 神经影像学 认知心理学 机器学习 心理学 深度学习 神经科学 建筑工程 物理 管理 声学 工程类 经济
作者
Xinrui Yuan,Jiale Cheng,Fenqiang Zhao,Zhengwang Wu,Li Wang,Weili Lin,Yu Zhang,Gang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 545-554
标识
DOI:10.1007/978-3-031-43996-4_52
摘要

During the early postnatal period, the human brain undergoes rapid and dynamic development. Over the past decades, there has been increased attention in studying the cognitive and cortical development of infants. However, accurate prediction of the infant cognitive and cortical development at an individual-level is a significant challenge, due to the huge complexities in highly irregular and incomplete longitudinal data that is commonly seen in current studies. Besides, joint prediction of cognitive scores and cortical morphology is barely investigated, despite some studies revealing the tight relationship between cognitive ability and cortical morphology and suggesting their potential mutual benefits. To tackle this challenge, we develop a flexible multi-task framework for joint prediction of cognitive scores and cortical morphological maps, namely, disentangled intensive triplet spherical adversarial autoencoder (DITSAA). First, we extract the mixed representative latent vector through a triplet spherical ResNet and further disentangles latent vector into identity-related and age-related features with an attention-based module. The identity recognition and age estimation tasks are introduced as supervision for a reliable disentanglement of the two components. Then we formulate the individualized cortical profile at a specific age by combining disentangled identity-related information and corresponding age-related information. Finally, an adversarial learning strategy is integrated to achieve a vivid and realistic prediction of cortical morphology, while a cognitive module is employed to predict cognitive scores. Extensive experiments are conducted on a public dataset, and the results affirm our method’s ability to predict cognitive scores and cortical morphology jointly and flexibly using incomplete longitudinal data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
整齐醉冬发布了新的文献求助10
2秒前
hrbykdxly发布了新的文献求助10
2秒前
JinghaoLi完成签到 ,获得积分10
3秒前
808bass应助Jason采纳,获得10
3秒前
苏苏完成签到,获得积分10
3秒前
3秒前
山山以川发布了新的文献求助10
4秒前
ly浩发布了新的文献求助10
4秒前
小号完成签到,获得积分10
4秒前
Jackpot完成签到 ,获得积分10
4秒前
南宫书芹完成签到,获得积分10
6秒前
Bob完成签到,获得积分10
7秒前
7秒前
Orange应助icecream采纳,获得10
7秒前
英姑应助YangYang666采纳,获得10
8秒前
梗梗发布了新的文献求助10
9秒前
天才玩家H完成签到,获得积分10
9秒前
自然画笔发布了新的文献求助10
10秒前
10秒前
隐形曼青应助依古比古采纳,获得10
11秒前
11秒前
科研通AI6应助123采纳,获得10
11秒前
11秒前
11秒前
12秒前
南宫书芹发布了新的文献求助10
12秒前
在水一方应助害羞含雁采纳,获得10
12秒前
13秒前
漂泊完成签到,获得积分10
13秒前
清爽的诗云完成签到,获得积分10
14秒前
14秒前
太阳雨完成签到,获得积分10
14秒前
cyf完成签到,获得积分10
14秒前
14秒前
黄学生完成签到 ,获得积分10
15秒前
asdfzxcv应助龘龘采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488