Deep Learning for Automatic Prediction of Lymph Node Station Metastasis in Esophageal Cancer Patients from Contrast-Enhanced CT

医学 转移 放射科 淋巴结 食管癌 深度学习 淋巴 癌症 核医学 人工智能 病理 计算机科学 内科学
作者
Yudong Wang,Jun-Ming Zhu,Dong Guo,Kun Yan,Lu Li,Shijie Wang,Dayong Jin,Xiangyang Ye,Qiang Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): S55-S55
标识
DOI:10.1016/j.ijrobp.2023.06.347
摘要

The diagnosis of lymph node (LN) metastasis in computed tomography (CT) is an essential yet challenging task in esophageal cancer staging and treatment planning. Although criteria (e.g., RECIST, morphological/texture features) are proposed to predict LN metastasis, the diagnostic accuracy remains low with sensitivity <50% and specificity <75%, as reported in previous studies. Deep learning (DL) has the potential to address this issue by learning from large-scale labeled data. However, due to the practical surgery procedure in lymph node dissection, it is difficult to pair the metastasis of individual LN reported in the pathology report to the LN instance found in the CT image. Hence, in this study, we first use pathology reports to determine the LNS metastasis, then develop a multiple instance deep learning (MIDL) model to predict lymph node station (LNS) metastasis.We collected 1200 esophageal cancer patients with preoperative contrast-enhanced CT before surgery. A recently developed automatic mediastinal LNS segmentation model was first applied to segment LNS of 1 to 8 based on the IASLC protocol. For each LNS, the local CT region of interest (ROI) was cropped to generate a station-wise CT patch, where the LNS was labeled as metastatic if at least one metastatic LN was indicated in the pathology report. Using the station-wise CT patch and LNS label, we train a 3D MIDL model, MobileNetV3, to predict LNS metastasis. To better provide the LN position priors in MIDL, LN instances (with a short axis >4mm) were also segmented using an automatic LN detection algorithm and were added to the MIDL model as an auxiliary input. Five-fold cross-validation was conducted to evaluate the MIDL performance.The MIDL model's performance is summarized in Table 1. The MIDL model incorporating an additional LN instance mask demonstrated a superior overall AUC of 0.7539, surpassing the model without the LN mask input by 2.93%. The specificity was evaluated at a threshold resulting in a recall of 0.7, and the best model outperformed the CT input model in terms of specificity by 2.11%. This highlights the value of including the LN position prior to the MIDL model. Notably, when a threshold was set to result in a specificity of 75%, the best MIDL model demonstrated a significantly higher recall compared to the previously reported clinical diagnostic recall (39.7% vs. 63.21%).We developed a MIDL classification model to predict LNS metastasis using CT scans of 1200 patients. Our findings suggest that the MIDL model can substantially improve LNS metastasis prediction and has the potential to play an essential role in cancer staging, treatment planning, and prognostic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ning发布了新的文献求助10
刚刚
微笑易梦发布了新的文献求助20
刚刚
聚砂成塔完成签到,获得积分10
刚刚
北重楼完成签到,获得积分10
1秒前
爱尚完成签到,获得积分10
1秒前
打工人一枚完成签到,获得积分10
2秒前
机灵雨南完成签到 ,获得积分10
2秒前
3秒前
Zhao Jiaxu完成签到,获得积分20
3秒前
彭于彦祖应助斯文的傲珊采纳,获得30
3秒前
3秒前
4秒前
旺旺小小酥完成签到,获得积分10
5秒前
烟花应助Smile采纳,获得10
6秒前
7秒前
犹豫梨愁发布了新的文献求助10
8秒前
五梁液完成签到 ,获得积分10
8秒前
9秒前
tys0713104发布了新的文献求助10
9秒前
不要科研完成签到,获得积分20
9秒前
0206发布了新的文献求助10
10秒前
10秒前
充电宝应助DDM采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
jingwen发布了新的文献求助10
12秒前
不要科研发布了新的文献求助10
12秒前
木木三完成签到,获得积分10
14秒前
虎虎虎发布了新的文献求助10
14秒前
Akim应助难过小懒虫采纳,获得10
14秒前
哈哈哈发布了新的文献求助10
15秒前
15秒前
JamesPei应助tys0713104采纳,获得10
16秒前
打打应助鲤鱼星月采纳,获得10
17秒前
17秒前
可爱的函函应助一一采纳,获得10
18秒前
19秒前
19秒前
heheha发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011199
求助须知:如何正确求助?哪些是违规求助? 3550895
关于积分的说明 11306713
捐赠科研通 3285098
什么是DOI,文献DOI怎么找? 1810962
邀请新用户注册赠送积分活动 886662
科研通“疑难数据库(出版商)”最低求助积分说明 811581