亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning for Automatic Prediction of Lymph Node Station Metastasis in Esophageal Cancer Patients from Contrast-Enhanced CT

医学 转移 放射科 淋巴结 食管癌 深度学习 淋巴 癌症 核医学 人工智能 病理 计算机科学 内科学
作者
Yudong Wang,Jun-Ming Zhu,Dong Guo,Kun Yan,Lu Li,Shijie Wang,Dayong Jin,Xiangyang Ye,Qiang Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): S55-S55
标识
DOI:10.1016/j.ijrobp.2023.06.347
摘要

The diagnosis of lymph node (LN) metastasis in computed tomography (CT) is an essential yet challenging task in esophageal cancer staging and treatment planning. Although criteria (e.g., RECIST, morphological/texture features) are proposed to predict LN metastasis, the diagnostic accuracy remains low with sensitivity <50% and specificity <75%, as reported in previous studies. Deep learning (DL) has the potential to address this issue by learning from large-scale labeled data. However, due to the practical surgery procedure in lymph node dissection, it is difficult to pair the metastasis of individual LN reported in the pathology report to the LN instance found in the CT image. Hence, in this study, we first use pathology reports to determine the LNS metastasis, then develop a multiple instance deep learning (MIDL) model to predict lymph node station (LNS) metastasis.We collected 1200 esophageal cancer patients with preoperative contrast-enhanced CT before surgery. A recently developed automatic mediastinal LNS segmentation model was first applied to segment LNS of 1 to 8 based on the IASLC protocol. For each LNS, the local CT region of interest (ROI) was cropped to generate a station-wise CT patch, where the LNS was labeled as metastatic if at least one metastatic LN was indicated in the pathology report. Using the station-wise CT patch and LNS label, we train a 3D MIDL model, MobileNetV3, to predict LNS metastasis. To better provide the LN position priors in MIDL, LN instances (with a short axis >4mm) were also segmented using an automatic LN detection algorithm and were added to the MIDL model as an auxiliary input. Five-fold cross-validation was conducted to evaluate the MIDL performance.The MIDL model's performance is summarized in Table 1. The MIDL model incorporating an additional LN instance mask demonstrated a superior overall AUC of 0.7539, surpassing the model without the LN mask input by 2.93%. The specificity was evaluated at a threshold resulting in a recall of 0.7, and the best model outperformed the CT input model in terms of specificity by 2.11%. This highlights the value of including the LN position prior to the MIDL model. Notably, when a threshold was set to result in a specificity of 75%, the best MIDL model demonstrated a significantly higher recall compared to the previously reported clinical diagnostic recall (39.7% vs. 63.21%).We developed a MIDL classification model to predict LNS metastasis using CT scans of 1200 patients. Our findings suggest that the MIDL model can substantially improve LNS metastasis prediction and has the potential to play an essential role in cancer staging, treatment planning, and prognostic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HIMINNN完成签到,获得积分20
2秒前
9秒前
volvoamg发布了新的文献求助10
14秒前
GCD完成签到 ,获得积分10
23秒前
35秒前
59秒前
1分钟前
1分钟前
1分钟前
bkagyin应助司徒无剑采纳,获得10
1分钟前
1分钟前
1分钟前
樱桃猴子应助秋天采纳,获得10
1分钟前
volvoamg发布了新的文献求助10
1分钟前
1分钟前
稻子完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
司徒无剑发布了新的文献求助10
2分钟前
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
2分钟前
华仔应助丰富曼青采纳,获得30
3分钟前
3分钟前
丰富曼青发布了新的文献求助30
3分钟前
3分钟前
太叔夜南完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
胡可完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
volvoamg发布了新的文献求助10
5分钟前
北国雪未消完成签到 ,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412604
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716878