Deep Learning for Automatic Prediction of Lymph Node Station Metastasis in Esophageal Cancer Patients from Contrast-Enhanced CT

医学 转移 放射科 淋巴结 食管癌 深度学习 淋巴 癌症 核医学 人工智能 病理 计算机科学 内科学
作者
Yudong Wang,Jun-Ming Zhu,Dong Guo,Kun Yan,Lu Li,Shijie Wang,Dayong Jin,Xiangyang Ye,Qiang Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): S55-S55
标识
DOI:10.1016/j.ijrobp.2023.06.347
摘要

The diagnosis of lymph node (LN) metastasis in computed tomography (CT) is an essential yet challenging task in esophageal cancer staging and treatment planning. Although criteria (e.g., RECIST, morphological/texture features) are proposed to predict LN metastasis, the diagnostic accuracy remains low with sensitivity <50% and specificity <75%, as reported in previous studies. Deep learning (DL) has the potential to address this issue by learning from large-scale labeled data. However, due to the practical surgery procedure in lymph node dissection, it is difficult to pair the metastasis of individual LN reported in the pathology report to the LN instance found in the CT image. Hence, in this study, we first use pathology reports to determine the LNS metastasis, then develop a multiple instance deep learning (MIDL) model to predict lymph node station (LNS) metastasis.We collected 1200 esophageal cancer patients with preoperative contrast-enhanced CT before surgery. A recently developed automatic mediastinal LNS segmentation model was first applied to segment LNS of 1 to 8 based on the IASLC protocol. For each LNS, the local CT region of interest (ROI) was cropped to generate a station-wise CT patch, where the LNS was labeled as metastatic if at least one metastatic LN was indicated in the pathology report. Using the station-wise CT patch and LNS label, we train a 3D MIDL model, MobileNetV3, to predict LNS metastasis. To better provide the LN position priors in MIDL, LN instances (with a short axis >4mm) were also segmented using an automatic LN detection algorithm and were added to the MIDL model as an auxiliary input. Five-fold cross-validation was conducted to evaluate the MIDL performance.The MIDL model's performance is summarized in Table 1. The MIDL model incorporating an additional LN instance mask demonstrated a superior overall AUC of 0.7539, surpassing the model without the LN mask input by 2.93%. The specificity was evaluated at a threshold resulting in a recall of 0.7, and the best model outperformed the CT input model in terms of specificity by 2.11%. This highlights the value of including the LN position prior to the MIDL model. Notably, when a threshold was set to result in a specificity of 75%, the best MIDL model demonstrated a significantly higher recall compared to the previously reported clinical diagnostic recall (39.7% vs. 63.21%).We developed a MIDL classification model to predict LNS metastasis using CT scans of 1200 patients. Our findings suggest that the MIDL model can substantially improve LNS metastasis prediction and has the potential to play an essential role in cancer staging, treatment planning, and prognostic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒果柠檬完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
hope完成签到,获得积分10
1秒前
1秒前
blank发布了新的文献求助10
1秒前
王松桐发布了新的文献求助10
2秒前
甜美冰旋完成签到,获得积分20
2秒前
2秒前
3秒前
三土发布了新的文献求助10
3秒前
花生仔应助一自文又欠采纳,获得10
4秒前
4秒前
4秒前
泥泥应助科研梨采纳,获得30
5秒前
5秒前
gyq完成签到,获得积分10
5秒前
修仙中应助sandy采纳,获得10
5秒前
紧张的友灵完成签到,获得积分10
5秒前
李健应助littlechy采纳,获得10
5秒前
6秒前
6秒前
hhhh完成签到 ,获得积分10
6秒前
聪慧小霜应助杨贵严采纳,获得10
6秒前
6秒前
zeng发布了新的文献求助10
6秒前
6秒前
时生完成签到,获得积分10
7秒前
7秒前
游一完成签到,获得积分10
8秒前
科研通AI5应助blank采纳,获得10
8秒前
鸡鱼蚝发布了新的文献求助10
8秒前
想变瘦的阿憨完成签到,获得积分10
8秒前
lcjynwe完成签到,获得积分10
9秒前
9秒前
9秒前
鸣笛应助zz2905采纳,获得30
9秒前
chai发布了新的文献求助10
9秒前
10秒前
刘浩存完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572422
求助须知:如何正确求助?哪些是违规求助? 3993137
关于积分的说明 12361436
捐赠科研通 3666284
什么是DOI,文献DOI怎么找? 2020629
邀请新用户注册赠送积分活动 1054898
科研通“疑难数据库(出版商)”最低求助积分说明 942305