DEC-NWD: an approach for open set domain adaptation in fault diagnosis

计算机科学 判别式 域适应 鉴别器 分类器(UML) 数据挖掘 人工智能 模式识别(心理学) 机器学习 熵(时间箭头) 电信 物理 量子力学 探测器
作者
Xiaoping Zhao,Peng Peng,Xingan Xue,Minghua Ma
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025130-025130
标识
DOI:10.1088/1361-6501/ad0999
摘要

Abstract The issue of data-driven cross-domain fault diagnosis for rolling bearings has been effectively addressed through advancements in domain adaptation (DA) methods. However, most existing approaches assume the same set of labels for training data and test data. This assumption often falls short of reality, as new fault types may emerge during the testing phase, resulting in less effective DA methods based on marginal distribution. To address this issue, this study proposes an open set DA method based on domain similarity, entropy, confidence, and nuclear-norm 1-Wasserstein discrepancy (NWD). Within this method, a sample-level transferability criterion is introduced. This criterion quantifies the transferability of target samples and assigns small weights to the unknown class. The complementary nature of entropy and confidence is exploited to improve the discriminability of the network for highly uncertain predictions and to use multiple classifiers to compensate for the possible influence of prediction errors on confidence. Additionally, the NWD is utilized in this method. It treats the classifier as a discriminator and leverages the predicted discriminative information to maximize the alignment of the common classes between the source and target domains. The proposed method has been validated through extensive experiments conducted on two publicly available bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
As完成签到,获得积分20
1秒前
1秒前
dzk发布了新的文献求助10
1秒前
隐形曼青应助Dr.Joseph采纳,获得10
2秒前
4秒前
平淡思雁完成签到,获得积分10
5秒前
5秒前
脑洞疼应助现代的雪糕采纳,获得10
7秒前
猪肉超人菜婴蚊完成签到,获得积分10
7秒前
辛勤的奇异果完成签到,获得积分10
8秒前
大面包发布了新的文献求助10
12秒前
蜀黍发布了新的文献求助10
12秒前
14秒前
华仔应助辛勤的奇异果采纳,获得10
15秒前
15秒前
机智的灵萱完成签到,获得积分10
15秒前
16秒前
dzk完成签到,获得积分10
17秒前
18秒前
18秒前
zjm1441发布了新的文献求助10
18秒前
yang完成签到,获得积分20
18秒前
Helen发布了新的文献求助10
19秒前
20秒前
邱老黑发布了新的文献求助10
21秒前
23秒前
24秒前
WMT完成签到 ,获得积分10
25秒前
休斯顿完成签到,获得积分10
26秒前
26秒前
老实雁蓉完成签到,获得积分10
27秒前
程星宇发布了新的文献求助10
28秒前
28秒前
木南完成签到 ,获得积分10
29秒前
卡卡西应助白杨采纳,获得20
29秒前
30秒前
zjm1441完成签到,获得积分10
32秒前
33秒前
33秒前
善学以致用应助苗玉采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547