DEC-NWD: an approach for open set domain adaptation in fault diagnosis

计算机科学 判别式 域适应 鉴别器 分类器(UML) 数据挖掘 人工智能 模式识别(心理学) 机器学习 熵(时间箭头) 电信 物理 量子力学 探测器
作者
Xiaoping Zhao,Peng Peng,Xingan Xue,Minghua Ma
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025130-025130
标识
DOI:10.1088/1361-6501/ad0999
摘要

Abstract The issue of data-driven cross-domain fault diagnosis for rolling bearings has been effectively addressed through advancements in domain adaptation (DA) methods. However, most existing approaches assume the same set of labels for training data and test data. This assumption often falls short of reality, as new fault types may emerge during the testing phase, resulting in less effective DA methods based on marginal distribution. To address this issue, this study proposes an open set DA method based on domain similarity, entropy, confidence, and nuclear-norm 1-Wasserstein discrepancy (NWD). Within this method, a sample-level transferability criterion is introduced. This criterion quantifies the transferability of target samples and assigns small weights to the unknown class. The complementary nature of entropy and confidence is exploited to improve the discriminability of the network for highly uncertain predictions and to use multiple classifiers to compensate for the possible influence of prediction errors on confidence. Additionally, the NWD is utilized in this method. It treats the classifier as a discriminator and leverages the predicted discriminative information to maximize the alignment of the common classes between the source and target domains. The proposed method has been validated through extensive experiments conducted on two publicly available bearing datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Espoir完成签到,获得积分10
1秒前
2秒前
嘿嘿发布了新的文献求助30
2秒前
酷波er应助Nell采纳,获得10
2秒前
jie完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
丘比特应助水123采纳,获得10
4秒前
4秒前
桐桐应助zhiyuanren采纳,获得10
4秒前
4秒前
李绅语发布了新的文献求助10
4秒前
鳗鱼忆南发布了新的文献求助10
6秒前
syh完成签到,获得积分10
6秒前
现代菠萝发布了新的文献求助10
6秒前
8秒前
桐桐应助chrysan采纳,获得10
8秒前
eric发布了新的文献求助10
8秒前
麻喽发布了新的文献求助10
9秒前
科研通AI6应助LAYWL采纳,获得10
9秒前
9秒前
领导范儿应助张景峒采纳,获得10
9秒前
慕青应助zlf采纳,获得10
10秒前
闫辰完成签到 ,获得积分10
10秒前
latata完成签到,获得积分10
10秒前
10秒前
脑洞疼应助JY采纳,获得10
10秒前
666完成签到,获得积分10
10秒前
万能图书馆应助辛勤又蓝采纳,获得10
12秒前
Os发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
Vivien完成签到,获得积分10
13秒前
13秒前
无限大山完成签到,获得积分10
13秒前
SciGPT应助谨慎的易蓉采纳,获得10
13秒前
pyh01完成签到,获得积分10
14秒前
大模型应助我谈采纳,获得10
15秒前
叶子发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593599
求助须知:如何正确求助?哪些是违规求助? 4679468
关于积分的说明 14810164
捐赠科研通 4644508
什么是DOI,文献DOI怎么找? 2534573
邀请新用户注册赠送积分活动 1502632
关于科研通互助平台的介绍 1469366