DEC-NWD: an approach for open set domain adaptation in fault diagnosis

计算机科学 判别式 域适应 鉴别器 分类器(UML) 数据挖掘 人工智能 模式识别(心理学) 机器学习 熵(时间箭头) 电信 物理 量子力学 探测器
作者
Xiaoping Zhao,Peng Peng,Xingan Xue,Minghua Ma
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025130-025130
标识
DOI:10.1088/1361-6501/ad0999
摘要

Abstract The issue of data-driven cross-domain fault diagnosis for rolling bearings has been effectively addressed through advancements in domain adaptation (DA) methods. However, most existing approaches assume the same set of labels for training data and test data. This assumption often falls short of reality, as new fault types may emerge during the testing phase, resulting in less effective DA methods based on marginal distribution. To address this issue, this study proposes an open set DA method based on domain similarity, entropy, confidence, and nuclear-norm 1-Wasserstein discrepancy (NWD). Within this method, a sample-level transferability criterion is introduced. This criterion quantifies the transferability of target samples and assigns small weights to the unknown class. The complementary nature of entropy and confidence is exploited to improve the discriminability of the network for highly uncertain predictions and to use multiple classifiers to compensate for the possible influence of prediction errors on confidence. Additionally, the NWD is utilized in this method. It treats the classifier as a discriminator and leverages the predicted discriminative information to maximize the alignment of the common classes between the source and target domains. The proposed method has been validated through extensive experiments conducted on two publicly available bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
浮游应助外向的宛白采纳,获得10
1秒前
任团完成签到,获得积分10
3秒前
xuan完成签到,获得积分10
3秒前
hj发布了新的文献求助10
4秒前
涔雨发布了新的文献求助10
5秒前
纸速度发布了新的文献求助10
6秒前
WB87应助科研通管家采纳,获得10
6秒前
柏林寒冬应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得20
6秒前
老阎应助科研通管家采纳,获得30
6秒前
6秒前
Zx_1993应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
WB87应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
老阎应助科研通管家采纳,获得30
6秒前
7秒前
Zx_1993应助科研通管家采纳,获得10
7秒前
WB87应助科研通管家采纳,获得10
7秒前
Saul完成签到,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
WB87应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
baihehuakai发布了新的文献求助30
10秒前
今后应助虚心念桃采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425307
求助须知:如何正确求助?哪些是违规求助? 4539385
关于积分的说明 14167531
捐赠科研通 4456762
什么是DOI,文献DOI怎么找? 2444320
邀请新用户注册赠送积分活动 1435292
关于科研通互助平台的介绍 1412721