肥料
环境化学
化学
土壤水分
砷
腐植酸
污染
抗生素
抗生素耐药性
土壤污染
肥料
农学
生物
生态学
生物化学
有机化学
作者
Mengmeng Yan,Changxiong Zhu,Zhonglan Yang,Hongna Li
标识
DOI:10.1016/j.jenvman.2023.118683
摘要
Antibiotic resistance genes (ARGs) can threaten the clean production of rice owing to continuous selective pressure in heavy metal-antibiotic co-contaminated paddy soils. As an important soil carbon reservoir, the role of humic substances from different types of manure in the regulation of soil ARGs remains unclear. In this study, fulvic acid (FA) and humic acid (HA) were extracted from pig manure (PM), cow dung (CD), and chicken manure (CM). The influence of their characteristics and doses on the fate of ARGs was investigated in arsenic (As)-antibiotic co-contaminated paddy soils. The release of As and degradation of antibiotics were promoted in 1% PM-FA treatment, with increases of 4.8%-5.6% and 8.3%-8.8% compared with CM-FA and CD-FA treatments, respectively. The coexistence of FA/HA, Fe, As, and antibiotics in soil pore water affected the environmental behavior of ARGs, with FA showing a more positive effect. Species including Bacillus, Geobacter, Desulfitobacterium, and Christensenellaceae_R-7_group were considered potential hosts of ARGs, and their resistance to co-contamination increased after the addition of FA. Membrane transport is a potential strategy for host bacteria of ARGs to cope with As-antibiotic complex pressure. These results demonstrate the coupling mechanisms of As, antibiotics, and ARGs regulated by different humic substances in co-contaminated paddy soils, which could support the clean production of rice in agricultural practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI