Classification of Rosa roxburghii Tratt from different geographical origins using non-targeted HPLC-UV-FLD fingerprints and chemometrics

线性判别分析 化学计量学 高效液相色谱法 偏最小二乘回归 主成分分析 色谱法 模式识别(心理学) 人工智能 指纹(计算) 化学 数学 计算机科学 统计
作者
Xiao‐Dong Sun,Min Zhang,Shuo Zhang,Yixuan Chen,Junhua Chen,Pengjiao Wang,Xiu-Li Gao
出处
期刊:Food Control [Elsevier BV]
卷期号:155: 110087-110087 被引量:8
标识
DOI:10.1016/j.foodcont.2023.110087
摘要

In this study, a novel non-targeted strategy based on high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and fluorescence detection (HPLC-FLD) was first proposed for the classification of Rosa roxburghii Tratt (RRT) from eight geographical origins in Guizhou, China. HPLC-UV and HPLC-FLD fingerprints were simultaneously recorded by an HPLC-UV-FLD instrument. Then, fingerprint data were processed with low-level data fusion and variable reduction strategies before chemometric analysis. Based on different signal types and data orders of the resulting fingerprints, four strategies for RRT classification were proposed and compared. In the first three strategies, three supervised classification methods including partial least squares-discriminant analysis (PLS-DA), principal component analysis-linear discriminant analysis (PCA-LDA) and random forest (RF) were used to build discriminant models, using different kinds of first-order fingerprints (HPLC-UV, HPLC-FLD and HPLC-UV-FLD), respectively. Moreover, N-way partial least squares-discriminant analysis (NPLS-DA) discriminant model was established based on the second-order fingerprints acquired by HPLC-FLD. By comparison, the best result was obtained by PLS-DA based on first-order HPLC-UV-FLD fused fingerprints, the correct classification rates (CCRs) of cross-validation, training set and test set were 98.8%, 100% and 96.9%, respectively. Non-targeted chromatographic fingerprints were used to solve the problem of RRT classification for the first time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖珂发布了新的文献求助10
刚刚
upandcoming完成签到,获得积分10
1秒前
2秒前
伶俐绮发布了新的文献求助10
2秒前
2秒前
乐乐应助陈一冲采纳,获得10
2秒前
玛卡巴卡发布了新的文献求助10
3秒前
3秒前
何以解忧发布了新的文献求助10
3秒前
小二郎应助古月采纳,获得10
3秒前
4秒前
阿莫仙完成签到,获得积分10
5秒前
5秒前
5秒前
harry2021完成签到,获得积分10
5秒前
FANTASY完成签到,获得积分20
5秒前
6秒前
李6666发布了新的文献求助10
6秒前
闪闪完成签到,获得积分10
7秒前
柠檬水加冰应助又见三皮采纳,获得10
7秒前
biopyx完成签到,获得积分10
7秒前
小小铱发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
cfer发布了新的文献求助10
11秒前
在水一方应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得30
12秒前
wangruize完成签到,获得积分10
12秒前
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975986
求助须知:如何正确求助?哪些是违规求助? 3520289
关于积分的说明 11202025
捐赠科研通 3256778
什么是DOI,文献DOI怎么找? 1798453
邀请新用户注册赠送积分活动 877605
科研通“疑难数据库(出版商)”最低求助积分说明 806482