已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of Rosa roxburghii Tratt from different geographical origins using non-targeted HPLC-UV-FLD fingerprints and chemometrics

线性判别分析 化学计量学 高效液相色谱法 偏最小二乘回归 主成分分析 色谱法 模式识别(心理学) 人工智能 指纹(计算) 化学 数学 计算机科学 统计
作者
Xiao‐Dong Sun,Min Zhang,Shuo Zhang,Yixuan Chen,Junhua Chen,Pengjiao Wang,Xiu-Li Gao
出处
期刊:Food Control [Elsevier]
卷期号:155: 110087-110087 被引量:6
标识
DOI:10.1016/j.foodcont.2023.110087
摘要

In this study, a novel non-targeted strategy based on high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and fluorescence detection (HPLC-FLD) was first proposed for the classification of Rosa roxburghii Tratt (RRT) from eight geographical origins in Guizhou, China. HPLC-UV and HPLC-FLD fingerprints were simultaneously recorded by an HPLC-UV-FLD instrument. Then, fingerprint data were processed with low-level data fusion and variable reduction strategies before chemometric analysis. Based on different signal types and data orders of the resulting fingerprints, four strategies for RRT classification were proposed and compared. In the first three strategies, three supervised classification methods including partial least squares-discriminant analysis (PLS-DA), principal component analysis-linear discriminant analysis (PCA-LDA) and random forest (RF) were used to build discriminant models, using different kinds of first-order fingerprints (HPLC-UV, HPLC-FLD and HPLC-UV-FLD), respectively. Moreover, N-way partial least squares-discriminant analysis (NPLS-DA) discriminant model was established based on the second-order fingerprints acquired by HPLC-FLD. By comparison, the best result was obtained by PLS-DA based on first-order HPLC-UV-FLD fused fingerprints, the correct classification rates (CCRs) of cross-validation, training set and test set were 98.8%, 100% and 96.9%, respectively. Non-targeted chromatographic fingerprints were used to solve the problem of RRT classification for the first time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就到同学发布了新的文献求助10
5秒前
heiyi完成签到,获得积分10
5秒前
5秒前
hhchhcmxhf完成签到,获得积分10
6秒前
自由的梦露完成签到 ,获得积分10
9秒前
Zhenqian应助yaoyao采纳,获得10
11秒前
12秒前
14秒前
MAKA发布了新的文献求助10
14秒前
15秒前
15秒前
yzhhhh发布了新的文献求助10
16秒前
hehe完成签到,获得积分10
16秒前
qaz123发布了新的文献求助10
19秒前
科研通AI2S应助nenoaowu采纳,获得10
19秒前
科研通AI2S应助nenoaowu采纳,获得10
19秒前
独特觅翠应助nenoaowu采纳,获得10
19秒前
20秒前
阔达的安卉完成签到,获得积分20
22秒前
24秒前
dddlrb完成签到,获得积分20
25秒前
成就丹秋完成签到,获得积分10
27秒前
Xulun完成签到,获得积分10
27秒前
Zhenqian应助菩提本无树采纳,获得20
27秒前
kai完成签到 ,获得积分10
29秒前
31秒前
dddlrb发布了新的文献求助30
31秒前
xiayu完成签到 ,获得积分10
31秒前
32秒前
鬼见愁应助Eva111采纳,获得200
33秒前
ruizhi发布了新的文献求助10
35秒前
虚幻明杰完成签到,获得积分10
35秒前
37秒前
37秒前
小人物的坚持完成签到 ,获得积分10
38秒前
Ollm完成签到,获得积分10
42秒前
43秒前
OCDer完成签到,获得积分0
43秒前
qaz123发布了新的文献求助10
43秒前
成就丹秋发布了新的文献求助50
44秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219617
求助须知:如何正确求助?哪些是违规求助? 2868402
关于积分的说明 8160932
捐赠科研通 2535466
什么是DOI,文献DOI怎么找? 1367931
科研通“疑难数据库(出版商)”最低求助积分说明 645118
邀请新用户注册赠送积分活动 618457