亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

OSCNet: Orientation-Shared Convolutional Network for CT Metal Artifact Learning

计算机科学 人工智能 工件(错误) 卷积神经网络 方向(向量空间) 计算机视觉 几何学 数学
作者
Hong Wang,Qi Xie,Dong Zeng,Jianhua Ma,Deyu Meng,Yefeng Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 489-502 被引量:14
标识
DOI:10.1109/tmi.2023.3310987
摘要

X-ray computed tomography (CT) has been broadly adopted in clinical applications for disease diagnosis and image-guided interventions. However, metals within patients always cause unfavorable artifacts in the recovered CT images. Albeit attaining promising reconstruction results for this metal artifact reduction (MAR) task, most of the existing deep-learning-based approaches have some limitations. The critical issue is that most of these methods have not fully exploited the important prior knowledge underlying this specific MAR task. Therefore, in this paper, we carefully investigate the inherent characteristics of metal artifacts which present rotationally symmetrical streaking patterns. Then we specifically propose an orientation-shared convolution representation mechanism to adapt such physical prior structures and utilize Fourier-series-expansion-based filter parametrization for modelling artifacts, which can finely separate metal artifacts from body tissues. By adopting the classical proximal gradient algorithm to solve the model and then utilizing the deep unfolding technique, we easily build the corresponding orientation-shared convolutional network, termed as OSCNet. Furthermore, considering that different sizes and types of metals would lead to different artifact patterns (e.g., intensity of the artifacts), to better improve the flexibility of artifact learning and fully exploit the reconstructed results at iterative stages for information propagation, we design a simple-yet-effective sub-network for the dynamic convolution representation of artifacts. By easily integrating the sub-network into the proposed OSCNet framework, we further construct a more flexible network structure, called OSCNet+, which improves the generalization performance. Through extensive experiments conducted on synthetic and clinical datasets, we comprehensively substantiate the effectiveness of our proposed methods. Code will be released at https://github.com/hongwang01/OSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
ersheng发布了新的文献求助10
11秒前
Richard完成签到 ,获得积分10
22秒前
33秒前
58秒前
乐乐应助科研通管家采纳,获得10
1分钟前
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
科研通AI6应助doublenine18采纳,获得30
1分钟前
1分钟前
SciGPT应助ODN采纳,获得10
1分钟前
Andy完成签到,获得积分10
1分钟前
健壮惋清完成签到 ,获得积分10
2分钟前
LEETHEO完成签到,获得积分10
2分钟前
情怀应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
可爱寻芹发布了新的文献求助10
3分钟前
劉浏琉完成签到,获得积分10
3分钟前
zhjl完成签到,获得积分10
3分钟前
shadow完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
ODN发布了新的文献求助10
5分钟前
Akim应助朱羊羊采纳,获得10
5分钟前
doublenine18发布了新的文献求助30
5分钟前
我哪知道怎么完成签到 ,获得积分10
6分钟前
ling发布了新的文献求助10
6分钟前
乐乐应助火速阿百川采纳,获得10
6分钟前
6分钟前
6分钟前
7分钟前
凸凸发布了新的文献求助10
7分钟前
今后应助凸凸采纳,获得10
8分钟前
怪僻完成签到 ,获得积分10
8分钟前
AJ完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639688
求助须知:如何正确求助?哪些是违规求助? 4749790
关于积分的说明 15007137
捐赠科研通 4797851
什么是DOI,文献DOI怎么找? 2563972
邀请新用户注册赠送积分活动 1522849
关于科研通互助平台的介绍 1482518