亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

OSCNet: Orientation-Shared Convolutional Network for CT Metal Artifact Learning

计算机科学 人工智能 工件(错误) 卷积神经网络 方向(向量空间) 计算机视觉 几何学 数学
作者
Hong Wang,Qi Xie,Dong Zeng,Jianhua Ma,Deyu Meng,Yefeng Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 489-502 被引量:14
标识
DOI:10.1109/tmi.2023.3310987
摘要

X-ray computed tomography (CT) has been broadly adopted in clinical applications for disease diagnosis and image-guided interventions. However, metals within patients always cause unfavorable artifacts in the recovered CT images. Albeit attaining promising reconstruction results for this metal artifact reduction (MAR) task, most of the existing deep-learning-based approaches have some limitations. The critical issue is that most of these methods have not fully exploited the important prior knowledge underlying this specific MAR task. Therefore, in this paper, we carefully investigate the inherent characteristics of metal artifacts which present rotationally symmetrical streaking patterns. Then we specifically propose an orientation-shared convolution representation mechanism to adapt such physical prior structures and utilize Fourier-series-expansion-based filter parametrization for modelling artifacts, which can finely separate metal artifacts from body tissues. By adopting the classical proximal gradient algorithm to solve the model and then utilizing the deep unfolding technique, we easily build the corresponding orientation-shared convolutional network, termed as OSCNet. Furthermore, considering that different sizes and types of metals would lead to different artifact patterns (e.g., intensity of the artifacts), to better improve the flexibility of artifact learning and fully exploit the reconstructed results at iterative stages for information propagation, we design a simple-yet-effective sub-network for the dynamic convolution representation of artifacts. By easily integrating the sub-network into the proposed OSCNet framework, we further construct a more flexible network structure, called OSCNet+, which improves the generalization performance. Through extensive experiments conducted on synthetic and clinical datasets, we comprehensively substantiate the effectiveness of our proposed methods. Code will be released at https://github.com/hongwang01/OSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助拉长的人雄采纳,获得10
4秒前
星辰大海应助CC采纳,获得10
12秒前
14秒前
满意的颦完成签到,获得积分10
15秒前
15秒前
19秒前
21秒前
拉长的人雄完成签到,获得积分10
36秒前
44秒前
Yuanyuan发布了新的文献求助10
48秒前
一点发布了新的文献求助10
50秒前
ceeray23应助科研通管家采纳,获得200
54秒前
浮游应助专一的摩托车采纳,获得10
56秒前
58秒前
鲁啊鲁完成签到 ,获得积分10
59秒前
orixero应助迷你的醉薇采纳,获得10
1分钟前
深情安青应助边缘人格采纳,获得10
1分钟前
1分钟前
云槿完成签到 ,获得积分10
1分钟前
1分钟前
shallow_air完成签到,获得积分10
1分钟前
1分钟前
优秀冰真完成签到,获得积分10
1分钟前
shallow_air发布了新的文献求助10
1分钟前
标致金毛发布了新的文献求助10
1分钟前
萧雨墨发布了新的文献求助10
2分钟前
充电宝应助一点采纳,获得30
2分钟前
2分钟前
2分钟前
一点发布了新的文献求助30
2分钟前
坦率的语芙完成签到,获得积分10
2分钟前
安静的从梦完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
iDong完成签到 ,获得积分10
2分钟前
秀丽的采梦关注了科研通微信公众号
2分钟前
JrPaleo101完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568155
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701843
捐赠科研通 4594471
什么是DOI,文献DOI怎么找? 2520964
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696