OSCNet: Orientation-Shared Convolutional Network for CT Metal Artifact Learning

计算机科学 人工智能 工件(错误) 卷积神经网络 卷积(计算机科学) 方向(向量空间) 深度学习 模式识别(心理学) 代表(政治) 计算机视觉 人工神经网络 几何学 数学 政治 政治学 法学
作者
Hong Wang,Qi Xie,Dong Zeng,Jianhua Ma,Deyu Meng,Yefeng Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 489-502 被引量:1
标识
DOI:10.1109/tmi.2023.3310987
摘要

X-ray computed tomography (CT) has been broadly adopted in clinical applications for disease diagnosis and image-guided interventions. However, metals within patients always cause unfavorable artifacts in the recovered CT images. Albeit attaining promising reconstruction results for this metal artifact reduction (MAR) task, most of the existing deep-learning-based approaches have some limitations. The critical issue is that most of these methods have not fully exploited the important prior knowledge underlying this specific MAR task. Therefore, in this paper, we carefully investigate the inherent characteristics of metal artifacts which present rotationally symmetrical streaking patterns. Then we specifically propose an orientation-shared convolution representation mechanism to adapt such physical prior structures and utilize Fourier-series-expansion-based filter parametrization for modelling artifacts, which can finely separate metal artifacts from body tissues. By adopting the classical proximal gradient algorithm to solve the model and then utilizing the deep unfolding technique, we easily build the corresponding orientation-shared convolutional network, termed as OSCNet. Furthermore, considering that different sizes and types of metals would lead to different artifact patterns (e.g., intensity of the artifacts), to better improve the flexibility of artifact learning and fully exploit the reconstructed results at iterative stages for information propagation, we design a simple-yet-effective sub-network for the dynamic convolution representation of artifacts. By easily integrating the sub-network into the proposed OSCNet framework, we further construct a more flexible network structure, called OSCNet+, which improves the generalization performance. Through extensive experiments conducted on synthetic and clinical datasets, we comprehensively substantiate the effectiveness of our proposed methods. Code will be released at https://github.com/hongwang01/OSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助舒适逊采纳,获得10
刚刚
1秒前
酷波er应助西瓜太郎君采纳,获得10
1秒前
羽鸮完成签到,获得积分20
1秒前
largpark关注了科研通微信公众号
1秒前
YYMM完成签到,获得积分10
1秒前
2秒前
moralz完成签到,获得积分10
2秒前
lincsh完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助明理冰淇淋采纳,获得30
2秒前
3秒前
3秒前
哦o完成签到,获得积分10
3秒前
xiaobao完成签到,获得积分10
3秒前
西西发布了新的文献求助10
3秒前
完美世界应助121采纳,获得10
3秒前
852应助重要半兰采纳,获得10
4秒前
4秒前
沉默的小耳朵完成签到 ,获得积分10
5秒前
5秒前
生动以山发布了新的文献求助10
5秒前
F-cp发布了新的文献求助10
7秒前
LisaZhuo完成签到,获得积分10
7秒前
kkk发布了新的文献求助10
7秒前
YYMM发布了新的文献求助10
7秒前
超级大饼完成签到,获得积分10
9秒前
GH完成签到,获得积分20
9秒前
薰硝壤应助CG2021采纳,获得10
9秒前
喜悦念柏发布了新的文献求助30
11秒前
bot_753完成签到,获得积分10
11秒前
11秒前
66666发布了新的文献求助10
12秒前
12秒前
西西完成签到,获得积分20
13秒前
Jasper应助北彧采纳,获得10
14秒前
15秒前
Jasper应助星星采纳,获得10
15秒前
penguin发布了新的文献求助10
16秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079871
求助须知:如何正确求助?哪些是违规求助? 2732588
关于积分的说明 7524713
捐赠科研通 2381420
什么是DOI,文献DOI怎么找? 1262876
科研通“疑难数据库(出版商)”最低求助积分说明 612123
版权声明 597460