OSCNet: Orientation-Shared Convolutional Network for CT Metal Artifact Learning

计算机科学 人工智能 工件(错误) 卷积神经网络 卷积(计算机科学) 方向(向量空间) 深度学习 模式识别(心理学) 代表(政治) 计算机视觉 人工神经网络 几何学 政治学 数学 政治 法学
作者
Hong Wang,Qi Xie,Dong Zeng,Jianhua Ma,Deyu Meng,Yefeng Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 489-502 被引量:1
标识
DOI:10.1109/tmi.2023.3310987
摘要

X-ray computed tomography (CT) has been broadly adopted in clinical applications for disease diagnosis and image-guided interventions. However, metals within patients always cause unfavorable artifacts in the recovered CT images. Albeit attaining promising reconstruction results for this metal artifact reduction (MAR) task, most of the existing deep-learning-based approaches have some limitations. The critical issue is that most of these methods have not fully exploited the important prior knowledge underlying this specific MAR task. Therefore, in this paper, we carefully investigate the inherent characteristics of metal artifacts which present rotationally symmetrical streaking patterns. Then we specifically propose an orientation-shared convolution representation mechanism to adapt such physical prior structures and utilize Fourier-series-expansion-based filter parametrization for modelling artifacts, which can finely separate metal artifacts from body tissues. By adopting the classical proximal gradient algorithm to solve the model and then utilizing the deep unfolding technique, we easily build the corresponding orientation-shared convolutional network, termed as OSCNet. Furthermore, considering that different sizes and types of metals would lead to different artifact patterns (e.g., intensity of the artifacts), to better improve the flexibility of artifact learning and fully exploit the reconstructed results at iterative stages for information propagation, we design a simple-yet-effective sub-network for the dynamic convolution representation of artifacts. By easily integrating the sub-network into the proposed OSCNet framework, we further construct a more flexible network structure, called OSCNet+, which improves the generalization performance. Through extensive experiments conducted on synthetic and clinical datasets, we comprehensively substantiate the effectiveness of our proposed methods. Code will be released at https://github.com/hongwang01/OSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Helbock采纳,获得30
1秒前
lakiliu完成签到,获得积分10
1秒前
科研通AI6应助。。。采纳,获得10
1秒前
3秒前
xxfsx应助清爽的铭采纳,获得10
3秒前
完美世界应助问奈何采纳,获得10
4秒前
snowman完成签到 ,获得积分10
5秒前
5秒前
JamesPei应助Taegu采纳,获得10
5秒前
Owen应助kl小子采纳,获得10
7秒前
米兰无敌发布了新的文献求助10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
时差完成签到,获得积分10
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得200
9秒前
9秒前
9秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
10秒前
Tourist应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
11秒前
冷傲长颈鹿完成签到,获得积分10
11秒前
Mic关闭了Mic文献求助
12秒前
O基米德发布了新的文献求助10
13秒前
不想说完成签到,获得积分10
13秒前
clean发布了新的文献求助10
13秒前
13秒前
清秀凉面发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263241
求助须知:如何正确求助?哪些是违规求助? 4423888
关于积分的说明 13771111
捐赠科研通 4298829
什么是DOI,文献DOI怎么找? 2358729
邀请新用户注册赠送积分活动 1354999
关于科研通互助平台的介绍 1316209