OSCNet: Orientation-Shared Convolutional Network for CT Metal Artifact Learning

计算机科学 人工智能 工件(错误) 卷积神经网络 卷积(计算机科学) 方向(向量空间) 深度学习 模式识别(心理学) 代表(政治) 计算机视觉 人工神经网络 几何学 政治学 数学 政治 法学
作者
Hong Wang,Qi Xie,Dong Zeng,Jianhua Ma,Deyu Meng,Yefeng Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 489-502 被引量:1
标识
DOI:10.1109/tmi.2023.3310987
摘要

X-ray computed tomography (CT) has been broadly adopted in clinical applications for disease diagnosis and image-guided interventions. However, metals within patients always cause unfavorable artifacts in the recovered CT images. Albeit attaining promising reconstruction results for this metal artifact reduction (MAR) task, most of the existing deep-learning-based approaches have some limitations. The critical issue is that most of these methods have not fully exploited the important prior knowledge underlying this specific MAR task. Therefore, in this paper, we carefully investigate the inherent characteristics of metal artifacts which present rotationally symmetrical streaking patterns. Then we specifically propose an orientation-shared convolution representation mechanism to adapt such physical prior structures and utilize Fourier-series-expansion-based filter parametrization for modelling artifacts, which can finely separate metal artifacts from body tissues. By adopting the classical proximal gradient algorithm to solve the model and then utilizing the deep unfolding technique, we easily build the corresponding orientation-shared convolutional network, termed as OSCNet. Furthermore, considering that different sizes and types of metals would lead to different artifact patterns (e.g., intensity of the artifacts), to better improve the flexibility of artifact learning and fully exploit the reconstructed results at iterative stages for information propagation, we design a simple-yet-effective sub-network for the dynamic convolution representation of artifacts. By easily integrating the sub-network into the proposed OSCNet framework, we further construct a more flexible network structure, called OSCNet+, which improves the generalization performance. Through extensive experiments conducted on synthetic and clinical datasets, we comprehensively substantiate the effectiveness of our proposed methods. Code will be released at https://github.com/hongwang01/OSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的猕猴桃应助123456采纳,获得10
刚刚
2秒前
充电宝应助严惜采纳,获得10
3秒前
3秒前
Die完成签到,获得积分10
4秒前
Eisbecher发布了新的文献求助10
5秒前
llll发布了新的文献求助10
6秒前
7秒前
7秒前
10秒前
Theprisoners应助lay采纳,获得20
10秒前
小蘑菇应助宋晴采纳,获得10
12秒前
784273145发布了新的文献求助10
12秒前
夜雨潇潇发布了新的文献求助10
13秒前
庞威完成签到 ,获得积分10
13秒前
13秒前
14秒前
17秒前
豆豆发布了新的文献求助10
17秒前
18秒前
18秒前
QCL给QCL的求助进行了留言
18秒前
ylq关闭了ylq文献求助
19秒前
嗯哼大王发布了新的文献求助10
21秒前
小猪跳水发布了新的文献求助10
21秒前
21秒前
香蕉觅云应助严惜采纳,获得10
22秒前
天天快乐应助fff采纳,获得30
24秒前
25秒前
ZHH发布了新的文献求助10
25秒前
25秒前
26秒前
小猪跳水完成签到,获得积分20
27秒前
27秒前
完美世界应助yy采纳,获得10
28秒前
28秒前
充电宝应助摇滚谬中庸采纳,获得10
29秒前
mm发布了新的文献求助10
29秒前
YYGQ完成签到,获得积分10
30秒前
Archy发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609