亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intratumoural and peritumoural CT-based radiomics for diagnosing lepidic-predominant adenocarcinoma in patients with pure ground-glass nodules: a machine learning approach

医学 无线电技术 接收机工作特性 病态的 梯度升压 薄壁组织 腺癌 Boosting(机器学习) 放射科 机器学习 人工智能 病理 癌症 内科学 计算机科学 随机森林
作者
Yuan Zou,Qinxiang Mao,Zhenguo Zhao,Xiaoyu Zhou,Yunhe Pan,Zhichao Zuo,Wei Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (2): e211-e218 被引量:2
标识
DOI:10.1016/j.crad.2023.11.003
摘要

•Assessing pGGN subtypes using radiomics. •ML integrates intratumoral and peritumoral features for subtype assessment. •Generalizability validated with preoperative CT data from two centers. AIM To develop and validate a diagnostic model utilising machine-learning algorithms that differentiates lepidic predominant adenocarcinoma (LPA) from other pathological subtypes in patients with pure ground-glass nodules (pGGNs). MATERIALS AND METHODS This bicentric study was conducted across two medical centres and included 151 patients diagnosed with lung adenocarcinoma based on histopathological confirmation of pGGNs. The training cohort consisted of 99 patients from Institution 1, while the test cohort included 52 patients from Institution 2. Radiomics features were extracted from both tumours and the 2 mm peritumoural parenchyma. The tumoural and peritumoural radiomics were designated as Modeltumoural and Modelperitumoural, respectively. The diagnostic efficacy of various models was evaluated through the receiver operating characteristic (ROC) curve analysis. Subsequently, a machine-learning-based prediction model that combined Modeltumoural, Modelperitumoural, and Modelclinical–radiological was developed to differentiate LPA from other pathological subtypes in patients with pGGNs. RESULTS Modeltumoural achieved area under the curve (AUC) values of 0.762 and 0.783 in the training and validation sets, respectively. Modelperitumoural attained AUCs of 0.742 and 0.667, and Modelclinical–radiological generated an AUC of 0.727 and 0.739 in the training and validation sets, respectively. Among the machine-learning models evaluated, gradient boosting machines demonstrated the best diagnostic efficacy, with accuracy, AUC, F1 score, and log loss values of 0.885, 0.956, 0.943, and 0.260, respectively. CONCLUSION The combined model based on machine learning that incorporated tumour and peritumoural parenchyma, as well as clinical and imaging characteristics, may offer benefits in assessing the pathological subtype of pGGNs. To develop and validate a diagnostic model utilising machine-learning algorithms that differentiates lepidic predominant adenocarcinoma (LPA) from other pathological subtypes in patients with pure ground-glass nodules (pGGNs). This bicentric study was conducted across two medical centres and included 151 patients diagnosed with lung adenocarcinoma based on histopathological confirmation of pGGNs. The training cohort consisted of 99 patients from Institution 1, while the test cohort included 52 patients from Institution 2. Radiomics features were extracted from both tumours and the 2 mm peritumoural parenchyma. The tumoural and peritumoural radiomics were designated as Modeltumoural and Modelperitumoural, respectively. The diagnostic efficacy of various models was evaluated through the receiver operating characteristic (ROC) curve analysis. Subsequently, a machine-learning-based prediction model that combined Modeltumoural, Modelperitumoural, and Modelclinical–radiological was developed to differentiate LPA from other pathological subtypes in patients with pGGNs. Modeltumoural achieved area under the curve (AUC) values of 0.762 and 0.783 in the training and validation sets, respectively. Modelperitumoural attained AUCs of 0.742 and 0.667, and Modelclinical–radiological generated an AUC of 0.727 and 0.739 in the training and validation sets, respectively. Among the machine-learning models evaluated, gradient boosting machines demonstrated the best diagnostic efficacy, with accuracy, AUC, F1 score, and log loss values of 0.885, 0.956, 0.943, and 0.260, respectively. The combined model based on machine learning that incorporated tumour and peritumoural parenchyma, as well as clinical and imaging characteristics, may offer benefits in assessing the pathological subtype of pGGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
Ni发布了新的文献求助10
20秒前
30秒前
49秒前
学霸宇大王完成签到 ,获得积分10
53秒前
伊坂完成签到 ,获得积分10
1分钟前
1分钟前
syiimo完成签到 ,获得积分10
1分钟前
柯擎汉发布了新的文献求助10
1分钟前
小二郎应助柯擎汉采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
2分钟前
研友_ZAVbe8应助科研通管家采纳,获得30
2分钟前
尘尘完成签到,获得积分10
2分钟前
xioayu完成签到 ,获得积分10
2分钟前
美好乐松完成签到,获得积分0
2分钟前
迷你的幻姬完成签到 ,获得积分10
2分钟前
科研通AI2S应助felix采纳,获得10
2分钟前
英俊的铭应助Cbp采纳,获得30
2分钟前
研友_VZG7GZ应助lyzhou采纳,获得10
3分钟前
甘木鸣完成签到 ,获得积分10
3分钟前
粽子完成签到,获得积分10
3分钟前
慕青应助粽子采纳,获得10
3分钟前
lynn_zhang完成签到,获得积分10
3分钟前
felix发布了新的文献求助10
3分钟前
hm发布了新的文献求助10
3分钟前
3分钟前
Cbp发布了新的文献求助30
3分钟前
3分钟前
ZhaoPeng完成签到,获得积分10
4分钟前
科研小白关注了科研通微信公众号
4分钟前
研友_ZAVbe8应助科研通管家采纳,获得30
4分钟前
樱桃猴子应助科研通管家采纳,获得20
4分钟前
Orange应助科研通管家采纳,获得10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
小悦悦完成签到 ,获得积分10
4分钟前
4分钟前
Winston发布了新的文献求助10
4分钟前
科研小白发布了新的文献求助10
4分钟前
4分钟前
xona完成签到,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784062
捐赠科研通 2444016
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989