Longitudinal clinical data improve survival prediction after hematopoietic cell transplantation using machine learning

造血细胞 医学 队列 移植 介绍 机器学习 病历 生存分析 队列研究 内科学 计算机科学 造血 干细胞 遗传学 家庭医学 生物
作者
Yiwang Zhou,Jesse Smith,Dinesh Keerthi,Cai Li,Yilun Sun,Suraj Sarvode Mothi,David C. Shyr,Barbara Spitzer,Andrew C. Harris,Avijit Chatterjee,Subrata Chatterjee,Roni Shouval,Swati Naik,Alice Bertaina,Jaap Jan Boelens,Brandon M. Triplett,Li Tang,Akshay Sharma
出处
期刊:Blood Advances [American Society of Hematology]
卷期号:8 (3): 686-698 被引量:5
标识
DOI:10.1182/bloodadvances.2023011752
摘要

Abstract Serial prognostic evaluation after allogeneic hematopoietic cell transplantation (allo-HCT) might help identify patients at high risk of lethal organ dysfunction. Current prediction algorithms based on models that do not incorporate changes to patients’ clinical condition after allo-HCT have limited predictive ability. We developed and validated a robust risk-prediction algorithm to predict short- and long-term survival after allo-HCT in pediatric patients that includes baseline biological variables and changes in the patients’ clinical status after allo-HCT. The model was developed using clinical data from children and young adults treated at a single academic quaternary-care referral center. The model was created using a randomly split training data set (70% of the cohort), internally validated (remaining 30% of the cohort) and then externally validated on patient data from another tertiary-care referral center. Repeated clinical measurements performed from 30 days before allo-HCT to 30 days afterwards were extracted from the electronic medical record and incorporated into the model to predict survival at 100 days, 1 year, and 2 years after allo-HCT. Naïve-Bayes machine learning models incorporating longitudinal data were significantly better than models constructed from baseline variables alone at predicting whether patients would be alive or deceased at the given time points. This proof-of-concept study demonstrates that unlike traditional prognostic tools that use fixed variables for risk assessment, incorporating dynamic variability using clinical and laboratory data improves the prediction of mortality in patients undergoing allo-HCT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助丰富小熊猫采纳,获得10
刚刚
鸿汉发布了新的文献求助10
刚刚
2秒前
JABBA发布了新的文献求助10
3秒前
个性的汲发布了新的文献求助10
3秒前
饭饭应助淘宝叮咚采纳,获得10
5秒前
wanan完成签到,获得积分10
6秒前
生物科研小白完成签到 ,获得积分10
7秒前
研友_kngAY8完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
求助人员发布了新的文献求助10
8秒前
8秒前
程雪完成签到,获得积分10
9秒前
9秒前
完美世界应助五星上将采纳,获得10
9秒前
积极鱼完成签到 ,获得积分10
9秒前
JABBA完成签到,获得积分10
10秒前
11秒前
11秒前
胡憨憨完成签到,获得积分10
11秒前
lin完成签到,获得积分10
12秒前
顺利毕业发布了新的文献求助10
12秒前
12秒前
12秒前
儒雅发布了新的文献求助10
14秒前
王一g完成签到,获得积分10
14秒前
shiyin发布了新的文献求助10
14秒前
14秒前
15秒前
丢星发布了新的文献求助10
15秒前
晚晚发布了新的文献求助10
15秒前
丰富小熊猫完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
漫梦qiqi发布了新的文献求助10
17秒前
WANDour完成签到,获得积分10
17秒前
18秒前
19秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586348
求助须知:如何正确求助?哪些是违规求助? 4669601
关于积分的说明 14779160
捐赠科研通 4619487
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830