Longitudinal clinical data improve survival prediction after hematopoietic cell transplantation using machine learning

造血细胞 医学 队列 移植 介绍 机器学习 病历 生存分析 队列研究 内科学 计算机科学 造血 干细胞 遗传学 家庭医学 生物
作者
Yiwang Zhou,Jesse Smith,Dinesh Keerthi,Cai Li,Yilun Sun,Suraj Sarvode Mothi,David C. Shyr,Barbara Spitzer,Andrew C. Harris,Avijit Chatterjee,Subrata Chatterjee,Roni Shouval,Swati Naik,Alice Bertaina,Jaap Jan Boelens,Brandon M. Triplett,Li Tang,Akshay Sharma
出处
期刊:Blood Advances [American Society of Hematology]
卷期号:8 (3): 686-698 被引量:5
标识
DOI:10.1182/bloodadvances.2023011752
摘要

Abstract Serial prognostic evaluation after allogeneic hematopoietic cell transplantation (allo-HCT) might help identify patients at high risk of lethal organ dysfunction. Current prediction algorithms based on models that do not incorporate changes to patients’ clinical condition after allo-HCT have limited predictive ability. We developed and validated a robust risk-prediction algorithm to predict short- and long-term survival after allo-HCT in pediatric patients that includes baseline biological variables and changes in the patients’ clinical status after allo-HCT. The model was developed using clinical data from children and young adults treated at a single academic quaternary-care referral center. The model was created using a randomly split training data set (70% of the cohort), internally validated (remaining 30% of the cohort) and then externally validated on patient data from another tertiary-care referral center. Repeated clinical measurements performed from 30 days before allo-HCT to 30 days afterwards were extracted from the electronic medical record and incorporated into the model to predict survival at 100 days, 1 year, and 2 years after allo-HCT. Naïve-Bayes machine learning models incorporating longitudinal data were significantly better than models constructed from baseline variables alone at predicting whether patients would be alive or deceased at the given time points. This proof-of-concept study demonstrates that unlike traditional prognostic tools that use fixed variables for risk assessment, incorporating dynamic variability using clinical and laboratory data improves the prediction of mortality in patients undergoing allo-HCT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
霍师傅发布了新的文献求助10
2秒前
3秒前
4秒前
彳亍完成签到,获得积分10
4秒前
4秒前
杨一发布了新的文献求助10
4秒前
5秒前
Hanoi347发布了新的文献求助200
7秒前
科研通AI6应助肥团采纳,获得10
7秒前
小美发布了新的文献求助10
8秒前
10秒前
11秒前
12秒前
天天快乐应助李小皮采纳,获得10
12秒前
14秒前
14秒前
PingxuZhang完成签到,获得积分10
14秒前
wwwzy发布了新的文献求助10
16秒前
孤独非笑完成签到,获得积分10
16秒前
17秒前
LSF发布了新的文献求助10
17秒前
wwrjj发布了新的文献求助10
19秒前
20秒前
LIZI22完成签到,获得积分10
20秒前
23秒前
LIZI22发布了新的文献求助10
23秒前
斯人完成签到 ,获得积分10
24秒前
Ac完成签到,获得积分10
25秒前
wwwzy完成签到,获得积分10
27秒前
29秒前
延胡索发布了新的文献求助10
29秒前
乐乐应助dogshit采纳,获得10
30秒前
111完成签到,获得积分20
31秒前
火星上安寒完成签到,获得积分20
33秒前
33秒前
34秒前
李小皮发布了新的文献求助10
34秒前
PTF应助怎么办采纳,获得10
34秒前
搜集达人应助菜鸟学习采纳,获得10
35秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291