Longitudinal clinical data improve survival prediction after hematopoietic cell transplantation using machine learning

造血细胞 医学 队列 移植 介绍 机器学习 病历 生存分析 队列研究 内科学 计算机科学 造血 干细胞 遗传学 家庭医学 生物
作者
Yiwang Zhou,Jesse Smith,Dinesh Keerthi,Cai Li,Yilun Sun,Suraj Sarvode Mothi,David C. Shyr,Barbara Spitzer,Andrew C. Harris,Avijit Chatterjee,Subrata Chatterjee,Roni Shouval,Swati Naik,Alice Bertaina,Jaap Jan Boelens,Brandon M. Triplett,Li Tang,Akshay Sharma
出处
期刊:Blood Advances [American Society of Hematology]
卷期号:8 (3): 686-698 被引量:5
标识
DOI:10.1182/bloodadvances.2023011752
摘要

Abstract Serial prognostic evaluation after allogeneic hematopoietic cell transplantation (allo-HCT) might help identify patients at high risk of lethal organ dysfunction. Current prediction algorithms based on models that do not incorporate changes to patients’ clinical condition after allo-HCT have limited predictive ability. We developed and validated a robust risk-prediction algorithm to predict short- and long-term survival after allo-HCT in pediatric patients that includes baseline biological variables and changes in the patients’ clinical status after allo-HCT. The model was developed using clinical data from children and young adults treated at a single academic quaternary-care referral center. The model was created using a randomly split training data set (70% of the cohort), internally validated (remaining 30% of the cohort) and then externally validated on patient data from another tertiary-care referral center. Repeated clinical measurements performed from 30 days before allo-HCT to 30 days afterwards were extracted from the electronic medical record and incorporated into the model to predict survival at 100 days, 1 year, and 2 years after allo-HCT. Naïve-Bayes machine learning models incorporating longitudinal data were significantly better than models constructed from baseline variables alone at predicting whether patients would be alive or deceased at the given time points. This proof-of-concept study demonstrates that unlike traditional prognostic tools that use fixed variables for risk assessment, incorporating dynamic variability using clinical and laboratory data improves the prediction of mortality in patients undergoing allo-HCT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蚌壳完成签到,获得积分20
刚刚
努力上进的小张完成签到,获得积分10
刚刚
光亮的灭绝完成签到,获得积分10
刚刚
刚刚
北冥有鱼发布了新的文献求助10
1秒前
雨濛濛发布了新的文献求助10
1秒前
1秒前
qiu完成签到,获得积分10
1秒前
千暮完成签到,获得积分10
2秒前
2秒前
无花果应助迷路沉鱼采纳,获得10
2秒前
EthanChan完成签到,获得积分10
3秒前
3秒前
哈哈哈完成签到,获得积分10
4秒前
Sherry完成签到,获得积分10
4秒前
大个应助光亮的灭绝采纳,获得30
4秒前
激情的含巧完成签到,获得积分10
4秒前
Hello应助温乘云采纳,获得10
4秒前
孙元应助luoshiwen采纳,获得10
4秒前
海绵宝宝完成签到 ,获得积分10
5秒前
5秒前
5秒前
AneyWinter66应助松子采纳,获得10
5秒前
6秒前
Eric完成签到 ,获得积分10
7秒前
专注忆曼发布了新的文献求助10
7秒前
7秒前
7秒前
ZYZYZY12336发布了新的文献求助10
7秒前
8秒前
温暖的南霜完成签到,获得积分10
8秒前
宋世伟发布了新的文献求助10
8秒前
CipherSage应助雨濛濛采纳,获得10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
青鸢完成签到,获得积分20
10秒前
princesun083完成签到,获得积分10
10秒前
大气思柔发布了新的文献求助10
10秒前
坚定的剑心完成签到,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297