Longitudinal clinical data improve survival prediction after hematopoietic cell transplantation using machine learning

造血细胞 医学 队列 移植 介绍 机器学习 病历 生存分析 队列研究 内科学 计算机科学 造血 干细胞 遗传学 生物 家庭医学
作者
Yiwang Zhou,Jesse Smith,Dinesh Keerthi,Cai Li,Yilun Sun,Suraj Sarvode Mothi,David C. Shyr,Barbara Spitzer,Andrew C. Harris,Avijit Chatterjee,Subrata Chatterjee,Roni Shouval,Swati Naik,Alice Bertaina,Jaap Jan Boelens,Brandon M. Triplett,Li Tang,Akshay Sharma
出处
期刊:Blood Advances [American Society of Hematology]
卷期号:8 (3): 686-698 被引量:5
标识
DOI:10.1182/bloodadvances.2023011752
摘要

Abstract Serial prognostic evaluation after allogeneic hematopoietic cell transplantation (allo-HCT) might help identify patients at high risk of lethal organ dysfunction. Current prediction algorithms based on models that do not incorporate changes to patients’ clinical condition after allo-HCT have limited predictive ability. We developed and validated a robust risk-prediction algorithm to predict short- and long-term survival after allo-HCT in pediatric patients that includes baseline biological variables and changes in the patients’ clinical status after allo-HCT. The model was developed using clinical data from children and young adults treated at a single academic quaternary-care referral center. The model was created using a randomly split training data set (70% of the cohort), internally validated (remaining 30% of the cohort) and then externally validated on patient data from another tertiary-care referral center. Repeated clinical measurements performed from 30 days before allo-HCT to 30 days afterwards were extracted from the electronic medical record and incorporated into the model to predict survival at 100 days, 1 year, and 2 years after allo-HCT. Naïve-Bayes machine learning models incorporating longitudinal data were significantly better than models constructed from baseline variables alone at predicting whether patients would be alive or deceased at the given time points. This proof-of-concept study demonstrates that unlike traditional prognostic tools that use fixed variables for risk assessment, incorporating dynamic variability using clinical and laboratory data improves the prediction of mortality in patients undergoing allo-HCT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monkey发布了新的文献求助10
刚刚
刚刚
动听的囧完成签到,获得积分10
刚刚
英姑应助黙宇循光采纳,获得10
1秒前
jinchen发布了新的文献求助50
2秒前
3秒前
JiaJiaQing发布了新的文献求助10
3秒前
万能图书馆应助安静远航采纳,获得10
4秒前
4秒前
cq220发布了新的文献求助10
4秒前
6秒前
痴情的寒荷完成签到,获得积分10
6秒前
jqs发布了新的文献求助10
7秒前
9秒前
9秒前
CodeCraft应助jinchen采纳,获得10
9秒前
kaikai发布了新的文献求助10
10秒前
黙宇循光发布了新的文献求助10
11秒前
11秒前
Owen应助韦觅松采纳,获得10
12秒前
小笼包发布了新的文献求助10
13秒前
爆米花应助cq220采纳,获得10
15秒前
qiu完成签到,获得积分10
16秒前
Hello应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
嘉心糖应助科研通管家采纳,获得30
18秒前
Ava应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
萧水白应助科研通管家采纳,获得10
18秒前
良辰应助科研通管家采纳,获得10
19秒前
李爱国应助L同学采纳,获得10
19秒前
19秒前
Silver完成签到,获得积分10
19秒前
19秒前
Silver发布了新的文献求助10
21秒前
流年末逝发布了新的文献求助10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529491
捐赠科研通 2621940
什么是DOI,文献DOI怎么找? 1434230
科研通“疑难数据库(出版商)”最低求助积分说明 665175
邀请新用户注册赠送积分活动 650738