清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Longitudinal clinical data improve survival prediction after hematopoietic cell transplantation using machine learning

造血细胞 医学 队列 移植 介绍 机器学习 病历 生存分析 队列研究 内科学 计算机科学 造血 干细胞 遗传学 家庭医学 生物
作者
Yiwang Zhou,Jesse Smith,Dinesh Keerthi,Cai Li,Yilun Sun,Suraj Sarvode Mothi,David C. Shyr,Barbara Spitzer,Andrew C. Harris,Avijit Chatterjee,Subrata Chatterjee,Roni Shouval,Swati Naik,Alice Bertaina,Jaap Jan Boelens,Brandon M. Triplett,Li Tang,Akshay Sharma
出处
期刊:Blood Advances [Elsevier BV]
卷期号:8 (3): 686-698 被引量:5
标识
DOI:10.1182/bloodadvances.2023011752
摘要

Abstract Serial prognostic evaluation after allogeneic hematopoietic cell transplantation (allo-HCT) might help identify patients at high risk of lethal organ dysfunction. Current prediction algorithms based on models that do not incorporate changes to patients’ clinical condition after allo-HCT have limited predictive ability. We developed and validated a robust risk-prediction algorithm to predict short- and long-term survival after allo-HCT in pediatric patients that includes baseline biological variables and changes in the patients’ clinical status after allo-HCT. The model was developed using clinical data from children and young adults treated at a single academic quaternary-care referral center. The model was created using a randomly split training data set (70% of the cohort), internally validated (remaining 30% of the cohort) and then externally validated on patient data from another tertiary-care referral center. Repeated clinical measurements performed from 30 days before allo-HCT to 30 days afterwards were extracted from the electronic medical record and incorporated into the model to predict survival at 100 days, 1 year, and 2 years after allo-HCT. Naïve-Bayes machine learning models incorporating longitudinal data were significantly better than models constructed from baseline variables alone at predicting whether patients would be alive or deceased at the given time points. This proof-of-concept study demonstrates that unlike traditional prognostic tools that use fixed variables for risk assessment, incorporating dynamic variability using clinical and laboratory data improves the prediction of mortality in patients undergoing allo-HCT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
7秒前
jlwang完成签到,获得积分10
23秒前
55秒前
59秒前
feiying完成签到,获得积分10
1分钟前
1分钟前
lsl完成签到 ,获得积分10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
2分钟前
追风发布了新的文献求助10
2分钟前
房天川完成签到 ,获得积分10
2分钟前
温柔的柠檬完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
chenyue233关注了科研通微信公众号
2分钟前
苗苗发布了新的文献求助30
2分钟前
2分钟前
追风发布了新的文献求助10
3分钟前
香蕉觅云应助michael_suo采纳,获得10
3分钟前
3分钟前
kaine完成签到,获得积分10
3分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
michael_suo发布了新的文献求助10
4分钟前
追风发布了新的文献求助10
4分钟前
coco完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
long198546发布了新的文献求助10
4分钟前
无悔完成签到 ,获得积分10
4分钟前
Re完成签到 ,获得积分10
4分钟前
kaine发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
KSDalton完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596694
求助须知:如何正确求助?哪些是违规求助? 4008506
关于积分的说明 12409300
捐赠科研通 3687618
什么是DOI,文献DOI怎么找? 2032529
邀请新用户注册赠送积分活动 1065751
科研通“疑难数据库(出版商)”最低求助积分说明 951072