放电等离子烧结
材料科学
延展性(地球科学)
烧结
色散(光学)
氧化物
等离子体
复合材料
冶金
光学
蠕动
核物理学
物理
作者
Yan Xu,Zhifeng Li,Haoxian Yang,Sheng Wang
摘要
Oxide dispersion strengthened (ODS) FeCrAl alloys dispersed high-density nano-oxides in the matrix show outstanding corrosion resistance and mechanical properties. However, ODS FeCrAl alloys achieve the high strength generally at the expense of ductility in some way. Here, a method by introducing a bimodal grain structure was designed to overcome the strength-ductility tradeoff. In this work, ODS FeCrAl alloys were successfully fabricated through various mechanical alloying time, combined with spark plasma sintering under the vacuum of less than 4Pa. Microstructural characterization showed that the average grains size and nano-oxides size decrease gradually, and the density of nano-oxides increases, as the milling time increases. Mechanical properties revealed that both the strength and ductility were significantly synergistic enhanced with increasing milling time. The bimodal grain distribution was beneficial for the activation of the back stress strengthening and the annihilation of these microcracks, thus achieving the excellent ductility (27.65%). In addition, transmission electron microscope (TEM) characterization illustrated that ultra-high-density nano-oxides (9.61×1022/m3) was crucial for enhancing the strength of ODS FeCrAl alloys (993MPa). The strengthening mechanism superposition, based on the model of nano-oxides interrelated with the dislocation, illustrated an excellent agreement with experimental results from yield strength strengthening mechanisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI