Predicting post-stroke cognitive impairment using machine learning: A prospective cohort study

医学 队列 置信区间 前瞻性队列研究 机器学习 接收机工作特性 物理疗法 内科学 计算机科学
作者
Wencan Ji,Canjun Wang,Hanqing Chen,Yan Liang,Shaohua Wang
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier]
卷期号:32 (11): 107354-107354 被引量:3
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107354
摘要

Post-stroke cognitive impairment (PSCI) is a serious complication of stroke that warrants prompt detection and management. Consequently, the development of a diagnostic prediction model holds clinical significance.Machine learning algorithms were employed to identify crucial variables and forecast PSCI occurrence within 3-6 months following acute ischemic stroke (AIS).A prospective study was conducted on a developed cohort (331 patients) utilizing data from the Affiliated Zhongda Hospital of Southeast University between January 2022 and August 2022, as well as an external validation cohort (66 patients) from December 2022 to January 2023. The optimal model was determined by integrating nine machine learning classification models, and personalized risk assessment was facilitated by a Shapley Additive exPlanations (SHAP) interpretation.Age, education, baseline National Institutes of Health Scale (NIHSS), Cerebral white matter degeneration (CWMD), Homocysteine (Hcy), and C-reactive protein (CRP) were identified as predictors of PSCI occurrence. Gaussian Naïve Bayes (GNB) model was determined to be the optimal model, surpassing other classifier models in the validation set (area under the curve [AUC]: 0.925, 95 % confidence interval [CI]: 0.861 - 0.988) and achieving the lowest Brier score. The GNB model performed well in the test sets (AUC: 0.919, accuracy: 0.864, sensitivity: 0.818, and specificity: 0.932).The present study involved the development of a GNB model and its elucidation through employment of the SHAP method. These findings provide compelling evidence for preventing PSCI, which could serve as a guide for high-risk patients to undertake appropriate preventive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
焦糖完成签到 ,获得积分10
刚刚
2秒前
细心怜寒发布了新的文献求助10
2秒前
yan123完成签到 ,获得积分10
2秒前
春天完成签到,获得积分10
4秒前
玥越完成签到,获得积分10
4秒前
5秒前
6秒前
郑盼秋完成签到,获得积分10
7秒前
777y完成签到,获得积分10
8秒前
8秒前
豆豆应助huco采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
qin希望应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
shilong.yang完成签到,获得积分10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
梦潇遥完成签到,获得积分10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得20
11秒前
rossliyi应助科研通管家采纳,获得10
11秒前
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
12秒前
梦潇遥发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825