Predicting post-stroke cognitive impairment using machine learning: A prospective cohort study

医学 队列 置信区间 前瞻性队列研究 机器学习 接收机工作特性 物理疗法 内科学 计算机科学
作者
Wencan Ji,Canjun Wang,Hanqing Chen,Yan Liang,Shaohua Wang
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier BV]
卷期号:32 (11): 107354-107354 被引量:16
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107354
摘要

Post-stroke cognitive impairment (PSCI) is a serious complication of stroke that warrants prompt detection and management. Consequently, the development of a diagnostic prediction model holds clinical significance.Machine learning algorithms were employed to identify crucial variables and forecast PSCI occurrence within 3-6 months following acute ischemic stroke (AIS).A prospective study was conducted on a developed cohort (331 patients) utilizing data from the Affiliated Zhongda Hospital of Southeast University between January 2022 and August 2022, as well as an external validation cohort (66 patients) from December 2022 to January 2023. The optimal model was determined by integrating nine machine learning classification models, and personalized risk assessment was facilitated by a Shapley Additive exPlanations (SHAP) interpretation.Age, education, baseline National Institutes of Health Scale (NIHSS), Cerebral white matter degeneration (CWMD), Homocysteine (Hcy), and C-reactive protein (CRP) were identified as predictors of PSCI occurrence. Gaussian Naïve Bayes (GNB) model was determined to be the optimal model, surpassing other classifier models in the validation set (area under the curve [AUC]: 0.925, 95 % confidence interval [CI]: 0.861 - 0.988) and achieving the lowest Brier score. The GNB model performed well in the test sets (AUC: 0.919, accuracy: 0.864, sensitivity: 0.818, and specificity: 0.932).The present study involved the development of a GNB model and its elucidation through employment of the SHAP method. These findings provide compelling evidence for preventing PSCI, which could serve as a guide for high-risk patients to undertake appropriate preventive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助YYL采纳,获得10
刚刚
刚刚
wzzhhh完成签到,获得积分10
1秒前
2秒前
酷波er应助含蓄小兔子采纳,获得10
2秒前
accept111完成签到,获得积分10
2秒前
COCOYuu完成签到,获得积分10
2秒前
冷水鱼完成签到,获得积分10
2秒前
2秒前
3秒前
落后鸭子完成签到,获得积分10
3秒前
李志华完成签到,获得积分10
3秒前
wxxx完成签到,获得积分10
3秒前
机灵鼠标完成签到,获得积分20
4秒前
哈哈呵完成签到,获得积分10
4秒前
5秒前
绿荫完成签到,获得积分10
5秒前
香蕉觅云应助馒头采纳,获得10
5秒前
铭铭完成签到,获得积分10
5秒前
陈瑞鸥发布了新的文献求助30
5秒前
静花水月完成签到,获得积分10
6秒前
youngneuron完成签到,获得积分10
6秒前
张有为发布了新的文献求助10
6秒前
6秒前
研友_nPoXoL完成签到,获得积分10
6秒前
甜美靖雁发布了新的文献求助10
7秒前
7秒前
7秒前
MOF@COF发布了新的文献求助10
8秒前
8秒前
鳗鱼如松完成签到,获得积分10
8秒前
8秒前
时尚半仙发布了新的文献求助10
8秒前
我是老大应助啊啊啊啊采纳,获得10
8秒前
一汪无前发布了新的文献求助10
8秒前
8秒前
wanci应助明亮飞机采纳,获得10
8秒前
9秒前
9秒前
huangchenxi发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251565
求助须知:如何正确求助?哪些是违规求助? 4415674
关于积分的说明 13746733
捐赠科研通 4287400
什么是DOI,文献DOI怎么找? 2352416
邀请新用户注册赠送积分活动 1349253
关于科研通互助平台的介绍 1308750