Deep learning applied to the histopathological diagnosis of ameloblastomas and ameloblastic carcinomas

人工智能 成釉细胞瘤 过度拟合 医学 分类器(UML) 计算机科学 放射科 病理 牙科 人工神经网络 上颌骨
作者
Daniela Giraldo‐Roldán,E. Ribeiro,Anna Luíza Damaceno Araújo,Paulo Victor Mendes Penafort,Viviane Mariano da Silva,Jeconias Câmara,Hélder Antônio Rebelo Pontes,Manoela Domingues Martins,Márcio Campos Oliveira,Alan Roger Santos‐Silva,Márcio Ajudarte Lopes,Luiz Paulo Kowalski,Matheus Cardoso Moraes,Pablo Agustín Vargas
出处
期刊:Journal of Oral Pathology & Medicine [Wiley]
卷期号:52 (10): 988-995 被引量:9
标识
DOI:10.1111/jop.13481
摘要

Odontogenic tumors (OT) are composed of heterogeneous lesions, which can be benign or malignant, with different behavior and histology. Within this classification, ameloblastoma and ameloblastic carcinoma (AC) represent a diagnostic challenge in daily histopathological practice due to their similar characteristics and the limitations that incisional biopsies represent. From these premises, we wanted to test the usefulness of models based on artificial intelligence (AI) in the field of oral and maxillofacial pathology for differential diagnosis. The main advantages of integrating Machine Learning (ML) with microscopic and radiographic imaging is the ability to significantly reduce intra-and inter observer variability and improve diagnostic objectivity and reproducibility.Thirty Digitized slides were collected from different diagnostic centers of oral pathology in Brazil. After performing manual annotation in the region of interest, the images were segmented and fragmented into small patches. In the supervised learning methodology for image classification, three models (ResNet50, DenseNet, and VGG16) were focus of investigation to provide the probability of an image being classified as class0 (i.e., ameloblastoma) or class1 (i.e., Ameloblastic carcinoma).The training and validation metrics did not show convergence, characterizing overfitting. However, the test results were satisfactory, with an average for ResNet50 of 0.75, 0.71, 0.84, 0.65, and 0.77 for accuracy, precision, sensitivity, specificity, and F1-score, respectively.The models demonstrated a strong potential of learning, but lack of generalization ability. The models learn fast, reaching a training accuracy of 98%. The evaluation process showed instability in validation; however, acceptable performance in the testing process, which may be due to the small data set. This first investigation opens an opportunity for expanding collaboration to incorporate more complementary data; as well as, developing and evaluating new alternative models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xx完成签到 ,获得积分10
2秒前
3秒前
美好灵寒发布了新的文献求助30
3秒前
123123完成签到 ,获得积分10
4秒前
7秒前
8秒前
cr7发布了新的文献求助10
11秒前
感动依霜完成签到 ,获得积分10
13秒前
cr7完成签到,获得积分20
19秒前
19秒前
劲秉应助认真诗双采纳,获得10
21秒前
angelinazh完成签到,获得积分10
21秒前
xiaoliu完成签到,获得积分10
22秒前
cdercder应助HXL采纳,获得10
23秒前
bc应助冷艳莛采纳,获得10
24秒前
迈克老狼发布了新的文献求助10
25秒前
Jenlisa完成签到 ,获得积分10
26秒前
健壮的凝冬完成签到 ,获得积分10
26秒前
HY完成签到 ,获得积分10
27秒前
星辰完成签到,获得积分10
28秒前
Yunis完成签到 ,获得积分10
31秒前
爱听歌天曼完成签到,获得积分10
31秒前
深情安青应助bfs采纳,获得10
32秒前
冷艳莛完成签到,获得积分10
32秒前
慕青应助ssk采纳,获得10
33秒前
柠檬完成签到 ,获得积分10
34秒前
搜集达人应助Splaink采纳,获得10
35秒前
现代绮玉完成签到,获得积分10
35秒前
追寻夏烟完成签到 ,获得积分10
37秒前
yyy完成签到 ,获得积分10
38秒前
38秒前
可可西里完成签到 ,获得积分10
39秒前
天真的嚓茶完成签到,获得积分10
41秒前
childheart发布了新的文献求助10
44秒前
asdfqwer应助科研通管家采纳,获得10
45秒前
小蘑菇应助科研通管家采纳,获得10
45秒前
45秒前
科研通AI5应助科研通管家采纳,获得10
45秒前
asdfqwer应助科研通管家采纳,获得10
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674727
求助须知:如何正确求助?哪些是违规求助? 3229886
关于积分的说明 9787504
捐赠科研通 2940514
什么是DOI,文献DOI怎么找? 1612042
邀请新用户注册赠送积分活动 761063
科研通“疑难数据库(出版商)”最低求助积分说明 736538