Damage localization using acoustic emission sensors via convolutional neural network and continuous wavelet transform

声发射 卷积神经网络 小波变换 计算机科学 小波 连续小波变换 时域 声学 信号(编程语言) 过程(计算) 人工智能 模式识别(心理学) 离散小波变换 计算机视觉 物理 程序设计语言 操作系统
作者
Van Vy,Yunwoo Lee,JinYeong Bak,Solmoi Park,Seunghee Park,Hyungchul Yoon
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:204: 110831-110831 被引量:31
标识
DOI:10.1016/j.ymssp.2023.110831
摘要

Due to aging structures, deterioration is becoming an essential issue in the engineering and facility management industry. Especially for nuclear power plants, the deterioration of structures could be directly related to safety issues. One of the popular methods for localizing damage such as cracks in nuclear power plants in the early stage is using acoustic emission sensors. The conventional methods for localizing damage using the acoustic emission sensor include methods such as time of arrival, time difference of arrival, and received signal strength indicator measurements. However, the conventional methods have large errors especially when the material is not homogeneous, or the propagation path of signals is non-straight. In this study, we propose a new deep learning-based damage localization method using acoustic emission sensors to automate the damage localization process and improve accuracy. First, the signals from acoustic emission sensors were collected and transformed into time–frequency domain images using continuous wavelet transform. Next, the convolutional neural networks were designed to localize the damage using the continuous wavelet transform images as the input. Finally, the trained convolutional neural networks were used to estimate the location or coordinates of damages. To validate the performance of the proposed method, experimental tests were conducted in the concrete panel and cube with artificially generated damages. The results express that the proposed method is effective and progressive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助I北草蜥采纳,获得10
刚刚
ping完成签到,获得积分10
刚刚
刚刚
科研通AI6应助乐观采纳,获得30
刚刚
1秒前
JokerSun完成签到,获得积分10
2秒前
lazy完成签到,获得积分10
2秒前
2秒前
景承完成签到 ,获得积分10
3秒前
dlm12138发布了新的文献求助10
4秒前
zjw完成签到,获得积分10
4秒前
完美世界应助马明芳采纳,获得10
5秒前
azuresky应助heyl采纳,获得30
6秒前
6秒前
香蕉觅云应助斯文明杰采纳,获得10
6秒前
7秒前
Cala洛~完成签到 ,获得积分10
7秒前
萌萌哒瓢酱完成签到,获得积分10
7秒前
Fury完成签到 ,获得积分10
10秒前
xiaoqi完成签到,获得积分10
10秒前
zfamjoy完成签到,获得积分10
10秒前
青阳完成签到,获得积分10
10秒前
liujiayi关注了科研通微信公众号
10秒前
Meyako应助新一袁采纳,获得10
10秒前
樱桃小贩完成签到,获得积分0
11秒前
Zll完成签到,获得积分10
11秒前
乐乐应助热爱科研的小孩采纳,获得10
11秒前
qqqqqqy发布了新的文献求助10
12秒前
芋圆完成签到,获得积分10
12秒前
漂南仰完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
wst1988完成签到,获得积分10
14秒前
忧伤的丹雪关注了科研通微信公众号
14秒前
14秒前
15秒前
huaiqiu关注了科研通微信公众号
15秒前
16秒前
黄营应助92小小白采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080