Damage localization using acoustic emission sensors via convolutional neural network and continuous wavelet transform

声发射 卷积神经网络 小波变换 计算机科学 小波 连续小波变换 时域 声学 信号(编程语言) 过程(计算) 人工智能 模式识别(心理学) 离散小波变换 计算机视觉 物理 程序设计语言 操作系统
作者
Van Vy,Yunwoo Lee,JinYeong Bak,Solmoi Park,Seunghee Park,Hyungchul Yoon
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:204: 110831-110831 被引量:44
标识
DOI:10.1016/j.ymssp.2023.110831
摘要

Due to aging structures, deterioration is becoming an essential issue in the engineering and facility management industry. Especially for nuclear power plants, the deterioration of structures could be directly related to safety issues. One of the popular methods for localizing damage such as cracks in nuclear power plants in the early stage is using acoustic emission sensors. The conventional methods for localizing damage using the acoustic emission sensor include methods such as time of arrival, time difference of arrival, and received signal strength indicator measurements. However, the conventional methods have large errors especially when the material is not homogeneous, or the propagation path of signals is non-straight. In this study, we propose a new deep learning-based damage localization method using acoustic emission sensors to automate the damage localization process and improve accuracy. First, the signals from acoustic emission sensors were collected and transformed into time–frequency domain images using continuous wavelet transform. Next, the convolutional neural networks were designed to localize the damage using the continuous wavelet transform images as the input. Finally, the trained convolutional neural networks were used to estimate the location or coordinates of damages. To validate the performance of the proposed method, experimental tests were conducted in the concrete panel and cube with artificially generated damages. The results express that the proposed method is effective and progressive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美的听芹完成签到 ,获得积分10
刚刚
1秒前
蓝天发布了新的文献求助10
2秒前
2秒前
2秒前
汉堡包应助Zxxz采纳,获得10
2秒前
3秒前
所所应助wisteria采纳,获得10
3秒前
糖豆发布了新的文献求助10
5秒前
hahaer完成签到,获得积分10
5秒前
yy发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
小汁儿发布了新的文献求助10
5秒前
小乌龟完成签到,获得积分10
5秒前
赵晨雪完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
yvette完成签到,获得积分10
6秒前
JLUO完成签到,获得积分10
6秒前
su完成签到,获得积分10
7秒前
Orange应助melodyalpha采纳,获得10
7秒前
7秒前
Rose完成签到,获得积分10
8秒前
klkl发布了新的文献求助10
8秒前
火火完成签到,获得积分10
8秒前
cccs发布了新的文献求助10
9秒前
juanjuan完成签到,获得积分10
9秒前
9秒前
十三完成签到,获得积分10
9秒前
9秒前
10秒前
华仔应助xinbowey采纳,获得10
10秒前
科研通AI6.1应助春春采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774564
求助须知:如何正确求助?哪些是违规求助? 5618586
关于积分的说明 15436395
捐赠科研通 4907129
什么是DOI,文献DOI怎么找? 2640538
邀请新用户注册赠送积分活动 1588364
关于科研通互助平台的介绍 1543318