亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Airfoil shape optimization using genetic algorithm coupled deep neural networks

翼型 计算流体力学 Lift(数据挖掘) 升阻比 遗传算法 空气动力学 解算器 阻力系数 人工神经网络 物理 阻力 形状优化 升力系数 算法 计算机科学 机械 数学优化 数学 有限元法 人工智能 机器学习 雷诺数 热力学 湍流
作者
Ming-Yu Wu,Xin-Yi Yuan,Zhihua Chen,Wei‐Tao Wu,Yue Hua,Nadine Aubry
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (8) 被引量:14
标识
DOI:10.1063/5.0160954
摘要

To alleviate the computational burden associated with the computational fluid dynamics (CFD) simulation stage and improve aerodynamic optimization efficiency, this work develops an innovative procedure for airfoil shape optimization, which is implemented through coupling the genetic algorithm (GA) optimizer with the aerodynamic coefficients prediction network (ACPN) model. The ACPN is established using a fully connected neural network with the airfoil geometry as the input and aerodynamic coefficients as the output. The results show that the ACPN's mean prediction accuracy for the lift and drag coefficient is high up to about 99.02%. Moreover, the prediction time of each aerodynamic coefficient is within 5 ms, four orders of magnitude faster compared to the CFD solver (3 min). Taking advantage of the fast and accurate prediction, the proposed ACPN model replaces the expensive CFD simulations and couples with GA to force the airfoil shape change to maximize the lift–drag ratio under multiple constraints. In terms of time efficiency, optimized airfoils can be fast obtained within 25 s. Even considering an extra 50 h spent on data preparing and 20 s for model training, the overall calculation cost is reduced by a remarkable 62.1% compared to the GA-CFD optimization method (5.5 days). Furthermore, the GA-ACPN model improves the lift–drag ratio with and without constraint by 51.4% and 55.4% for NACA0012 airfoil, respectively, while 50.3% and 60.0% improvement achieved by the GA-CFD optimization method. These results indicate that the GA-ACPN optimization approach significantly enhances the optimization efficiency and has great potential to address varying constraint optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助矢思然采纳,获得10
9秒前
15秒前
打打应助展正希采纳,获得10
17秒前
28秒前
38秒前
44秒前
量子星尘发布了新的文献求助10
45秒前
小狗发布了新的文献求助10
50秒前
50秒前
矢思然发布了新的文献求助10
54秒前
54秒前
善学以致用应助辣椒油采纳,获得10
1分钟前
1分钟前
ltt完成签到,获得积分10
1分钟前
1分钟前
ltt发布了新的文献求助10
1分钟前
1分钟前
完美世界应助mellow采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
天天快乐应助毛毛虫采纳,获得10
1分钟前
1分钟前
1分钟前
毛毛虫发布了新的文献求助10
1分钟前
展正希发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
展正希完成签到,获得积分10
2分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
大个应助科研通管家采纳,获得10
3分钟前
liwu完成签到 ,获得积分10
3分钟前
3分钟前
CodeCraft应助矢思然采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
矢思然发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128683
捐赠科研通 3238312
什么是DOI,文献DOI怎么找? 1789690
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069