A reinforcement double deep Q-network with prioritised experience replay for rolling bearing fault diagnosis

过度拟合 强化学习 计算机科学 人工智能 断层(地质) 理论(学习稳定性) 对偶(语法数字) 方位(导航) 方案(数学) 特征(语言学) 机器学习 人工神经网络 艺术 数学分析 语言学 哲学 文学类 数学 地震学 地质学
作者
Zhenning Li,Hongkai Jiang,Yunpeng Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125133-125133 被引量:1
标识
DOI:10.1088/1361-6501/acf23d
摘要

Abstract In recent years, deep learning has been increasingly applied to fault diagnosis and has attracted significant attention and research interest. Deep reinforcement learning (RL), with its capabilities in feature extraction and interactive learning, is highly suitable for fault diagnosis problems because it can acquire knowledge solely via system feedback. Despite its advantages, this method also has limitations, such as low training efficiency and unstable performance. Therefore, this study presents a novel diagnostic approach based on system feedback for rolling bearing fault diagnosis. This approach builds upon the original deep Q-network (DQN) approach, which incorporates an interactive dual network structure and experience replay optimisation for RL intelligence. This method introduces two major improvements. First, a dual network cyclic update scheme is implemented, assigning each dual network specific responsibilities to ensure training stability. Second, a novel experience playback system is introduced, which improves the efficiency of experience utilisation while circumventing the risk of overfitting. Compared with the original DQN method, the proposed approach and its two enhancement strategies provide significant advances in training efficiency, stability and diagnostic accuracy. Our experimental results indicate that this novel methodology has the potential to make valuable contributions in the area of rotating machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MAVS完成签到,获得积分10
刚刚
李爱国应助郑小凝采纳,获得10
刚刚
1秒前
1秒前
小超人哈里完成签到,获得积分10
2秒前
2秒前
xiaodu20230228完成签到,获得积分10
3秒前
4秒前
充电宝应助筏A采纳,获得30
4秒前
万能图书馆应助木小小采纳,获得10
4秒前
深情安青应助向北大望采纳,获得10
4秒前
大大怪将军完成签到,获得积分10
5秒前
Estrella应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
耶耶耶完成签到 ,获得积分10
6秒前
6秒前
6秒前
Cica完成签到 ,获得积分10
6秒前
不配.应助liwei采纳,获得20
6秒前
7秒前
打打应助要为真理而斗争采纳,获得10
7秒前
在水一方应助1234采纳,获得10
7秒前
gut发布了新的文献求助10
7秒前
精壮小伙发布了新的文献求助10
7秒前
LIULIAN完成签到,获得积分10
7秒前
7秒前
香蕉觅云应助东北一枝花采纳,获得10
8秒前
顾矜应助女神金采纳,获得10
8秒前
justsoso完成签到,获得积分10
8秒前
LAlalal完成签到,获得积分10
9秒前
贝利亚完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
夏阁完成签到,获得积分10
11秒前
陈瑗发布了新的文献求助10
11秒前
Polaris完成签到,获得积分10
11秒前
狄念梦完成签到,获得积分10
11秒前
mudiboyang发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147394
求助须知:如何正确求助?哪些是违规求助? 2798622
关于积分的说明 7830067
捐赠科研通 2455346
什么是DOI,文献DOI怎么找? 1306770
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587