Association between manganese exposure in heavy metals mixtures and the prevalence of sarcopenia in US adults from NHANES 2011–2018

肌萎缩 全国健康与营养检查调查 医学 逻辑回归 环境卫生 优势比 内科学 人口
作者
Qiong Huang,Jinfa Wan,Wenbin Nan,Siqi Li,Baimei He,Zhenyu Peng
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:464: 133005-133005 被引量:56
标识
DOI:10.1016/j.jhazmat.2023.133005
摘要

Environmental pollution is identified as an essential risk factor for sarcopenia. However, the effect of manganese (Mn) exposure on the prevalence of sarcopenia is not assessed. Our study investigated the correlation between blood Mn concentration and sarcopenia risk in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018. Three statistical methods were used to assess these correlations. Mediation analysis was performed to explore the role of inflammation in Mn exposure-induced sarcopenia. Of the 4957 individuals enrolled in this study, 398 (8 %) were diagnosed with sarcopenia. We found a positive association between the log10 Mn concentration and the prevalence of sarcopenia in the logistic regression model. Moreover, heavy metals mixtures were positively correlated with the prevalence of sarcopenia, with Mn identified as the main contributor to this association in the weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models. Furthermore, inflammation mediated the relationship between Mn exposure and the prevalence of sarcopenia, explaining 7.29 % of the effect (odds ratio: 0.03, 0.19, P = 0.002). Thus, our study results revealed that excessive Mn exposure is a contributing factor for sarcopenia. More prospective studies are required to examine the association between Mn exposure and the prevalence of sarcopenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
luochen完成签到,获得积分10
1秒前
2秒前
ShyerC完成签到,获得积分10
2秒前
2秒前
乖猴猴发布了新的文献求助10
2秒前
务实的续完成签到,获得积分10
3秒前
charon完成签到,获得积分20
3秒前
3秒前
Nature完成签到,获得积分10
4秒前
寒雨发布了新的文献求助10
4秒前
缥缈耷发布了新的文献求助10
4秒前
charon发布了新的文献求助10
6秒前
Levi李完成签到 ,获得积分10
6秒前
7秒前
包包发布了新的文献求助10
8秒前
sh发布了新的文献求助10
8秒前
9秒前
mw发布了新的文献求助10
9秒前
Ngu完成签到,获得积分10
12秒前
12秒前
yyou完成签到 ,获得积分10
12秒前
从容问雁完成签到,获得积分10
12秒前
13秒前
含糊完成签到 ,获得积分10
13秒前
Hhh发布了新的文献求助10
13秒前
碳土不凡完成签到 ,获得积分10
13秒前
真的研究牲完成签到,获得积分10
14秒前
阿萌完成签到 ,获得积分10
15秒前
Hello应助开心衬衫采纳,获得10
15秒前
15秒前
在水一方应助Ying采纳,获得10
15秒前
d.zhang完成签到,获得积分10
16秒前
金陵第一大美女完成签到,获得积分10
17秒前
17秒前
zzw完成签到,获得积分10
17秒前
哈哈哈完成签到,获得积分10
18秒前
18秒前
xxs发布了新的文献求助10
18秒前
YingGer发布了新的文献求助10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734798
求助须知:如何正确求助?哪些是违规求助? 3278733
关于积分的说明 10011078
捐赠科研通 2995408
什么是DOI,文献DOI怎么找? 1643417
邀请新用户注册赠送积分活动 781158
科研通“疑难数据库(出版商)”最低求助积分说明 749285