Smart Contract Vulnerability Detection Based on Automated Feature Extraction and Feature Interaction

计算机科学 特征提取 脆弱性(计算) 人工智能 特征(语言学) 特征向量 数据挖掘 脆弱性评估 机器学习 支持向量机 模式识别(心理学) 计算机安全 心理学 哲学 语言学 心理弹性 心理治疗师
作者
Lina Li,Yang Liu,Guodong Sun,Nianfeng Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tkde.2023.3333371
摘要

Smart contract is the core of blockchain operation, and contract vulnerability will cause huge economic losses. Therefore, effective smart contract vulnerability detection is of vital importance and attracts more and more attention. In this paper, we propose a vulnerability detection model (VDM-AEI) based on automatic feature extraction and feature interaction. For the first time, this model converts smart contracts into gray images and uses VGG16 and GRU models to automatically extract vulnerability features and filter effective features, respectively. Then, a contract graph and an expert knowledge feature vector are constructed by using commonly used methods as part of feature construction. Next, AutoInt and DCN networks are used to build a dual feature interaction network to obtain more abundant vulnerability feature information, which extracts high-dimensional nonlinear features from the low and sparse features of the contract graph feature vector and the expert knowledge-defined feature vector. Finally, all ouput features of GRU, AutoInt and DCN networks are integrated to obtain vulnerability classification results through fully connected neural networks. We conducted extensive experiments on the ESC and VSC datasets for reentrancy vulnerabilities, timestamp dependency vulnerabilities, and infinite loop vulnerabilities. The experimental results prove the effectiveness and accuracy of the VDM-AEI model. Compared with the latest vulnerability detection model CGE, the accuracy rates of the 3 types of vulnerability detection are improved by 10.85%, 6.18%, and 12.34%, respectively. In addition, the predicted F1 scores of VDM-AEI are all greater than 95%, and the recall rate is no less than 94%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoey完成签到 ,获得积分10
2秒前
3秒前
木木完成签到,获得积分20
3秒前
小岚花发布了新的文献求助10
3秒前
cindywu关注了科研通微信公众号
4秒前
蔡翌文发布了新的文献求助10
4秒前
scabbard24发布了新的文献求助10
4秒前
orixero应助大大的西瓜采纳,获得10
5秒前
5秒前
6秒前
weijie完成签到,获得积分10
6秒前
爆米花应助obdixp采纳,获得20
7秒前
7秒前
小王发布了新的文献求助10
8秒前
10秒前
可靠的如之完成签到,获得积分10
11秒前
专注棒棒糖完成签到 ,获得积分10
11秒前
11秒前
Lily发布了新的文献求助10
11秒前
12秒前
YZQ发布了新的文献求助10
13秒前
黑咖啡完成签到,获得积分10
13秒前
Liufgui应助可靠的如之采纳,获得10
15秒前
科研通AI2S应助阿俊采纳,获得10
16秒前
17秒前
19秒前
21秒前
21秒前
JamesPei应助YZQ采纳,获得10
22秒前
Orange应助邪恶花生米采纳,获得10
22秒前
weijie发布了新的文献求助10
22秒前
hf完成签到,获得积分10
22秒前
22秒前
24秒前
量子星尘发布了新的文献求助30
25秒前
硅负极完成签到,获得积分10
25秒前
zzt发布了新的文献求助10
25秒前
26秒前
Dr.Yang发布了新的文献求助10
27秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052