Smart Contract Vulnerability Detection Based on Automated Feature Extraction and Feature Interaction

计算机科学 特征提取 脆弱性(计算) 人工智能 特征(语言学) 特征向量 数据挖掘 脆弱性评估 机器学习 支持向量机 模式识别(心理学) 计算机安全 心理弹性 哲学 语言学 心理治疗师 心理学
作者
Lina Li,Yang Liu,Guodong Sun,Nianfeng Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tkde.2023.3333371
摘要

Smart contract is the core of blockchain operation, and contract vulnerability will cause huge economic losses. Therefore, effective smart contract vulnerability detection is of vital importance and attracts more and more attention. In this paper, we propose a vulnerability detection model (VDM-AEI) based on automatic feature extraction and feature interaction. For the first time, this model converts smart contracts into gray images and uses VGG16 and GRU models to automatically extract vulnerability features and filter effective features, respectively. Then, a contract graph and an expert knowledge feature vector are constructed by using commonly used methods as part of feature construction. Next, AutoInt and DCN networks are used to build a dual feature interaction network to obtain more abundant vulnerability feature information, which extracts high-dimensional nonlinear features from the low and sparse features of the contract graph feature vector and the expert knowledge-defined feature vector. Finally, all ouput features of GRU, AutoInt and DCN networks are integrated to obtain vulnerability classification results through fully connected neural networks. We conducted extensive experiments on the ESC and VSC datasets for reentrancy vulnerabilities, timestamp dependency vulnerabilities, and infinite loop vulnerabilities. The experimental results prove the effectiveness and accuracy of the VDM-AEI model. Compared with the latest vulnerability detection model CGE, the accuracy rates of the 3 types of vulnerability detection are improved by 10.85%, 6.18%, and 12.34%, respectively. In addition, the predicted F1 scores of VDM-AEI are all greater than 95%, and the recall rate is no less than 94%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
傲娇蜜蜂完成签到,获得积分10
3秒前
超级盼烟完成签到,获得积分10
3秒前
kangkang发布了新的文献求助30
5秒前
6秒前
7秒前
青柠完成签到 ,获得积分10
8秒前
欣喜的初柔完成签到 ,获得积分10
9秒前
10秒前
王昊完成签到,获得积分10
10秒前
xiaobai发布了新的文献求助10
11秒前
Jason发布了新的文献求助10
11秒前
桐桐应助瘦瘦的老三采纳,获得10
12秒前
Ra1n发布了新的文献求助10
13秒前
Barium完成签到,获得积分10
13秒前
丘比特应助减肥为窈窕采纳,获得30
13秒前
wangliang0329完成签到,获得积分10
14秒前
17秒前
自由的尔槐完成签到,获得积分10
17秒前
Dale完成签到,获得积分10
18秒前
cherry完成签到,获得积分10
19秒前
胜起发布了新的文献求助10
19秒前
tangz发布了新的文献求助30
19秒前
快哉快哉完成签到,获得积分10
20秒前
Ra1n完成签到,获得积分10
20秒前
20秒前
Liu完成签到,获得积分10
22秒前
丘比特应助chiweiyoung采纳,获得10
23秒前
一折悲画扇应助cclyfan采纳,获得10
24秒前
kangkang完成签到,获得积分20
25秒前
gaowei完成签到,获得积分10
27秒前
Lynn完成签到,获得积分10
30秒前
浮游应助daodao采纳,获得20
32秒前
32秒前
浮游应助wang5945采纳,获得10
36秒前
知北完成签到,获得积分10
38秒前
cclyfan完成签到,获得积分10
38秒前
时若完成签到,获得积分10
39秒前
Cuisine完成签到 ,获得积分10
40秒前
豆腐干地方完成签到,获得积分10
40秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225665
求助须知:如何正确求助?哪些是违规求助? 4397339
关于积分的说明 13686262
捐赠科研通 4261822
什么是DOI,文献DOI怎么找? 2338760
邀请新用户注册赠送积分活动 1336137
关于科研通互助平台的介绍 1292067