已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Gearbox Compound Fault Diagnosis in Edge-IoT Based on Legendre Multiwavelet Transform and Convolutional Neural Network

卷积神经网络 计算机科学 人工神经网络 稳健性(进化) 人工智能 特征提取 断层(地质) GSM演进的增强数据速率 模式识别(心理学) 边缘计算 噪音(视频) 数据挖掘 实时计算 地质学 图像(数学) 基因 地震学 化学 生物化学
作者
Xiaoyang Zheng,Lei Chen,Chengbo Yu,Zijian Lei,Zhixia Feng,Zhengyuan Wei
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (21): 8669-8669 被引量:1
标识
DOI:10.3390/s23218669
摘要

The application of edge computing combined with the Internet of Things (edge-IoT) has been rapidly developed. It is of great significance to develop a lightweight network for gearbox compound fault diagnosis in the edge-IoT context. The goal of this paper is to devise a novel and high-accuracy lightweight neural network based on Legendre multiwavelet transform and multi-channel convolutional neural network (LMWT-MCNN) to fast recognize various compound fault categories of gearbox. The contributions of this paper mainly lie in three aspects: The feature images are designed based on the LMWT frequency domain and they are easily implemented in the MCNN model to effectively avoid noise interference. The proposed lightweight model only consists of three convolutional layers and three pooling layers to further extract the most valuable fault features without any artificial feature extraction. In a fully connected layer, the specific fault type of rotating machinery is identified by the multi-label method. This paper provides a promising technique for rotating machinery fault diagnosis in real applications based on edge-IoT, which can largely reduce labor costs. Finally, the PHM 2009 gearbox and Paderborn University bearing compound fault datasets are used to verify the effectiveness and robustness of the proposed method. The experimental results demonstrate that the proposed lightweight network is able to reliably identify the compound fault categories with the highest accuracy under the strong noise environment compared with the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
cnnnnn完成签到 ,获得积分10
4秒前
灵巧的沛山完成签到,获得积分10
4秒前
李悦发布了新的文献求助10
5秒前
桐桐应助果冻橙采纳,获得30
5秒前
6秒前
仰望星空发布了新的文献求助10
8秒前
NexusExplorer应助果冻橙采纳,获得10
9秒前
10秒前
12秒前
汉堡包应助燕绥采纳,获得10
13秒前
江野完成签到 ,获得积分10
15秒前
后陡门爱神完成签到 ,获得积分10
17秒前
18秒前
cjh发布了新的文献求助10
21秒前
梨凉完成签到,获得积分10
21秒前
Akim应助李悦采纳,获得10
22秒前
花深粥完成签到,获得积分10
22秒前
斯文无敌发布了新的文献求助30
24秒前
haocong发布了新的文献求助10
24秒前
CipherSage应助读书的时候采纳,获得10
25秒前
27秒前
B4完成签到 ,获得积分10
28秒前
29秒前
赘婿应助cjh采纳,获得10
31秒前
35秒前
rrrick发布了新的文献求助10
37秒前
愛研究完成签到,获得积分10
37秒前
Hey完成签到 ,获得积分10
38秒前
38秒前
38秒前
吉他独奏手完成签到,获得积分10
38秒前
wxyshare应助lucy采纳,获得10
42秒前
酷波er应助殷子安采纳,获得10
43秒前
Zefinity完成签到,获得积分10
44秒前
果冻橙发布了新的文献求助10
44秒前
乐乐应助天才美少女骚猪采纳,获得10
48秒前
WJane完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934928
求助须知:如何正确求助?哪些是违规求助? 4202628
关于积分的说明 13058156
捐赠科研通 3977166
什么是DOI,文献DOI怎么找? 2179428
邀请新用户注册赠送积分活动 1195530
关于科研通互助平台的介绍 1106945