Gearbox Compound Fault Diagnosis in Edge-IoT Based on Legendre Multiwavelet Transform and Convolutional Neural Network

卷积神经网络 计算机科学 人工神经网络 稳健性(进化) 人工智能 特征提取 断层(地质) GSM演进的增强数据速率 模式识别(心理学) 边缘计算 噪音(视频) 数据挖掘 实时计算 地质学 图像(数学) 基因 地震学 化学 生物化学
作者
Xiaoyang Zheng,Lei Chen,Chengbo Yu,Zijian Lei,Zhixia Feng,Zhengyuan Wei
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (21): 8669-8669 被引量:1
标识
DOI:10.3390/s23218669
摘要

The application of edge computing combined with the Internet of Things (edge-IoT) has been rapidly developed. It is of great significance to develop a lightweight network for gearbox compound fault diagnosis in the edge-IoT context. The goal of this paper is to devise a novel and high-accuracy lightweight neural network based on Legendre multiwavelet transform and multi-channel convolutional neural network (LMWT-MCNN) to fast recognize various compound fault categories of gearbox. The contributions of this paper mainly lie in three aspects: The feature images are designed based on the LMWT frequency domain and they are easily implemented in the MCNN model to effectively avoid noise interference. The proposed lightweight model only consists of three convolutional layers and three pooling layers to further extract the most valuable fault features without any artificial feature extraction. In a fully connected layer, the specific fault type of rotating machinery is identified by the multi-label method. This paper provides a promising technique for rotating machinery fault diagnosis in real applications based on edge-IoT, which can largely reduce labor costs. Finally, the PHM 2009 gearbox and Paderborn University bearing compound fault datasets are used to verify the effectiveness and robustness of the proposed method. The experimental results demonstrate that the proposed lightweight network is able to reliably identify the compound fault categories with the highest accuracy under the strong noise environment compared with the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如风随水发布了新的文献求助10
刚刚
蛋堡完成签到 ,获得积分10
1秒前
风清扬发布了新的文献求助10
1秒前
zhaoyuepu发布了新的文献求助10
1秒前
3秒前
小智发布了新的文献求助10
4秒前
竹筏过海应助安陌煜采纳,获得30
5秒前
6秒前
当康康发布了新的文献求助10
6秒前
8秒前
虚拟的尔风完成签到,获得积分20
8秒前
9秒前
howl发布了新的文献求助10
9秒前
11秒前
彩色毛巾完成签到 ,获得积分10
11秒前
12秒前
在水一方应助duoduo采纳,获得10
13秒前
owoow发布了新的文献求助10
14秒前
雷小牛完成签到 ,获得积分10
15秒前
英俊的铭应助howl采纳,获得10
16秒前
wanci应助水果咔咔咔采纳,获得10
17秒前
17秒前
医路前行完成签到,获得积分10
17秒前
18秒前
能干白容完成签到,获得积分10
20秒前
Youatpome发布了新的文献求助10
21秒前
23秒前
饼藏发布了新的文献求助10
24秒前
24秒前
巯基发布了新的文献求助20
24秒前
陈哥完成签到,获得积分10
24秒前
25秒前
28秒前
Ava应助小欣采纳,获得10
28秒前
29秒前
Joe完成签到,获得积分10
29秒前
成就映秋发布了新的文献求助10
30秒前
owoow发布了新的文献求助10
30秒前
31秒前
濮阳冰海完成签到,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578