MDformer: A transformer-based method for predicting miRNA-Disease associations using multi-source feature fusion and maximal meta-path instances encoding

计算机科学 编码器 人工智能 变压器 特征(语言学) 源代码 深度学习 模式识别(心理学) 人工神经网络 机器学习 数据挖掘 语言学 哲学 物理 量子力学 电压 操作系统
作者
Benzhi Dong,Weidong Sun,Dali Xu,Guohua Wang,Tianjiao Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107585-107585 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107585
摘要

There is a growing body of evidence suggesting that microRNAs (miRNAs), small biological molecules, play a crucial role in the diagnosis, treatment, and prognostic assessment of diseases. However, it is often inefficient to verify the association between miRNAs and diseases (MDA) through traditional experimental methods. Based on this situation, researchers have proposed various computational-based methods, but the existing methods often have many drawbacks in terms of predictive effectiveness and accuracy. Therefore, in order to improve the prediction performance of computational methods, we propose a transformer-based prediction model (MDformer) for multi-source feature information. Specifically, first, we consider multiple features of miRNAs and diseases from the molecular biology perspective and utilize them in a fusion. Then high-quality node feature embeddings were generated using a feature encoder based on the transformer architecture and meta-path instances. Finally, a deep neural network was built for MDA prediction. To evaluate the performance of our model, we performed multiple 5-fold cross-validations as well as comparison experiments on HMDD v3.2 and HMDD v2.0 databases, and the experimental results of the average ROC area under the curve (AUC) were higher than the comparative methods for both databases at 0.9506 and 0.9369. We conducted case studies on five highly lethal cancers (breast, lung, colorectal, gastric, and hepatocellular cancers), and the first 30 predictions for these five diseases achieved 97.3% accuracy. In conclusion, MDformer is a reliable and scientifically sound tool that can be used to accurately predict MDA. In addition, the source code is available at https://github.com/Linda908/MDformer.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luxia完成签到 ,获得积分10
1秒前
杨华启完成签到,获得积分10
3秒前
5秒前
星辰大海应助飞奔小子采纳,获得10
5秒前
嘻哈小天才完成签到 ,获得积分10
5秒前
8秒前
ww不迷糊完成签到 ,获得积分10
8秒前
科研通AI6.1应助一二采纳,获得10
9秒前
搜集达人应助laochen采纳,获得10
11秒前
13秒前
17秒前
18秒前
22秒前
飞奔小子发布了新的文献求助10
22秒前
lidan_2008完成签到 ,获得积分10
24秒前
25秒前
26秒前
Owen应助diraczh采纳,获得10
27秒前
31秒前
xjx完成签到 ,获得积分10
33秒前
35秒前
35秒前
英姑应助搞怪飞机采纳,获得10
40秒前
Orange应助jia采纳,获得10
41秒前
42秒前
无奈破茧完成签到,获得积分10
43秒前
胡茶茶完成签到 ,获得积分10
43秒前
45秒前
言祁发布了新的文献求助10
46秒前
50秒前
bkagyin应助科研通管家采纳,获得10
54秒前
嘿嘿应助科研通管家采纳,获得20
55秒前
Ling99完成签到 ,获得积分10
55秒前
内向的老四完成签到,获得积分10
56秒前
56秒前
58秒前
59秒前
59秒前
华仔应助风清扬采纳,获得10
1分钟前
LeeHx完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869420
求助须知:如何正确求助?哪些是违规求助? 6451930
关于积分的说明 15660930
捐赠科研通 4985164
什么是DOI,文献DOI怎么找? 2688294
邀请新用户注册赠送积分活动 1630781
关于科研通互助平台的介绍 1588849