MDformer: A transformer-based method for predicting miRNA-Disease associations using multi-source feature fusion and maximal meta-path instances encoding

计算机科学 编码器 人工智能 变压器 特征(语言学) 源代码 深度学习 模式识别(心理学) 人工神经网络 机器学习 数据挖掘 量子力学 操作系统 物理 哲学 电压 语言学
作者
Benzhi Dong,Weidong Sun,Dali Xu,Guohua Wang,Tianjiao Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107585-107585 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107585
摘要

There is a growing body of evidence suggesting that microRNAs (miRNAs), small biological molecules, play a crucial role in the diagnosis, treatment, and prognostic assessment of diseases. However, it is often inefficient to verify the association between miRNAs and diseases (MDA) through traditional experimental methods. Based on this situation, researchers have proposed various computational-based methods, but the existing methods often have many drawbacks in terms of predictive effectiveness and accuracy. Therefore, in order to improve the prediction performance of computational methods, we propose a transformer-based prediction model (MDformer) for multi-source feature information. Specifically, first, we consider multiple features of miRNAs and diseases from the molecular biology perspective and utilize them in a fusion. Then high-quality node feature embeddings were generated using a feature encoder based on the transformer architecture and meta-path instances. Finally, a deep neural network was built for MDA prediction. To evaluate the performance of our model, we performed multiple 5-fold cross-validations as well as comparison experiments on HMDD v3.2 and HMDD v2.0 databases, and the experimental results of the average ROC area under the curve (AUC) were higher than the comparative methods for both databases at 0.9506 and 0.9369. We conducted case studies on five highly lethal cancers (breast, lung, colorectal, gastric, and hepatocellular cancers), and the first 30 predictions for these five diseases achieved 97.3% accuracy. In conclusion, MDformer is a reliable and scientifically sound tool that can be used to accurately predict MDA. In addition, the source code is available at https://github.com/Linda908/MDformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
swordlee发布了新的文献求助10
刚刚
满意的丹蝶完成签到,获得积分20
4秒前
隐形曼青应助qazpsy采纳,获得10
4秒前
4秒前
4秒前
4秒前
sci发布了新的文献求助10
4秒前
失眠的嫣应助双楠采纳,获得20
5秒前
5秒前
桐桐应助肖肖采纳,获得10
6秒前
bluemary发布了新的文献求助10
6秒前
XIAOCHENZI发布了新的文献求助30
7秒前
如故完成签到,获得积分10
7秒前
马蹄发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
12秒前
Erin完成签到,获得积分20
14秒前
14秒前
list完成签到,获得积分10
14秒前
Eve丶Paopaoxuan应助Love采纳,获得10
14秒前
14秒前
QQ完成签到 ,获得积分10
15秒前
李健的小迷弟应助马蹄采纳,获得10
15秒前
eeeee发布了新的文献求助10
15秒前
hui发布了新的文献求助10
16秒前
酷波er应助坚强的樱采纳,获得10
16秒前
swordlee发布了新的文献求助30
17秒前
科研通AI5应助XIAOCHENZI采纳,获得10
18秒前
包佳梁发布了新的文献求助10
19秒前
36456657应助garyzhang采纳,获得10
19秒前
21秒前
21秒前
oO完成签到,获得积分10
21秒前
泡芙完成签到 ,获得积分10
21秒前
hs完成签到,获得积分10
23秒前
ybheart完成签到,获得积分10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546392
求助须知:如何正确求助?哪些是违规求助? 3123535
关于积分的说明 9355677
捐赠科研通 2822080
什么是DOI,文献DOI怎么找? 1551259
邀请新用户注册赠送积分活动 723282
科研通“疑难数据库(出版商)”最低求助积分说明 713690