Emotion Recognition From Multimodal Physiological Signals via Discriminative Correlation Fusion With a Temporal Alignment Mechanism

判别式 典型相关 人工智能 计算机科学 机制(生物学) 模式识别(心理学) 融合机制 相关性 情感计算 模式 融合 机器学习 数学 哲学 语言学 几何学 认识论 脂质双层融合 社会科学 社会学
作者
Kechen Hou,Xiaowei Zhang,Yikun Yang,Qiqi Zhao,Wenjie Yuan,Zhongyi Zhou,Sipo Zhang,Chen Li,Jian Shen,Bin Hu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:4
标识
DOI:10.1109/tcyb.2023.3320107
摘要

Modeling correlations between multimodal physiological signals [e.g., canonical correlation analysis (CCA)] for emotion recognition has attracted much attention. However, existing studies rarely consider the neural nature of emotional responses within physiological signals. Furthermore, during fusion space construction, the CCA method maximizes only the correlations between different modalities and neglects the discriminative information of different emotional states. Most importantly, temporal mismatches between different neural activities are often ignored; therefore, the theoretical assumptions that multimodal data should be aligned in time and space before fusion are not fulfilled. To address these issues, we propose a discriminative correlation fusion method coupled with a temporal alignment mechanism for multimodal physiological signals. We first use neural signal analysis techniques to construct neural representations of the central nervous system (CNS) and autonomic nervous system (ANS). respectively. Then, emotion class labels are introduced in CCA to obtain more discriminative fusion representations from multimodal neural responses, and the temporal alignment between the CNS and ANS is jointly optimized with a fusion procedure that applies the Bayesian algorithm. The experimental results demonstrate that our method significantly improves the emotion recognition performance. Additionally, we show that this fusion method can model the underlying mechanisms in human nervous systems during emotional responses, and our results are consistent with prior findings. This study may guide a new approach for exploring human cognitive function based on physiological signals at different time scales and promote the development of computational intelligence and harmonious human-computer interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
桂花引完成签到,获得积分10
1秒前
2秒前
moeny85102发布了新的文献求助10
3秒前
4秒前
正直千兰完成签到,获得积分10
5秒前
ttnnn发布了新的文献求助10
5秒前
xuzj发布了新的文献求助30
5秒前
整齐的电源完成签到 ,获得积分10
5秒前
5秒前
hhh完成签到,获得积分10
6秒前
6秒前
xmxm完成签到,获得积分10
7秒前
孤岛发布了新的文献求助10
7秒前
认真代曼发布了新的文献求助10
7秒前
学术裁缝完成签到,获得积分10
8秒前
xmxm发布了新的文献求助10
9秒前
kasumin完成签到,获得积分10
10秒前
CodeCraft应助恍恍惚惚采纳,获得10
10秒前
kw完成签到,获得积分10
10秒前
滕擎发布了新的文献求助20
11秒前
Jasper应助ddd采纳,获得10
11秒前
喔啦发布了新的文献求助10
12秒前
打打应助沧浪江采纳,获得10
12秒前
kecheng应助无情的白桃采纳,获得10
12秒前
Hoper完成签到,获得积分10
12秒前
打打应助嗡嗡嗡采纳,获得10
14秒前
东方雨季发布了新的文献求助10
14秒前
NIUBEN完成签到,获得积分10
14秒前
宁紫涵完成签到,获得积分10
14秒前
16秒前
超帅昂完成签到,获得积分10
16秒前
威威完成签到,获得积分10
16秒前
柔弱熊猫完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
追梦完成签到 ,获得积分10
18秒前
桐桐应助www采纳,获得10
19秒前
heytexs发布了新的文献求助10
19秒前
喔啦完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970240
求助须知:如何正确求助?哪些是违规求助? 3514997
关于积分的说明 11176725
捐赠科研通 3250268
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875725
科研通“疑难数据库(出版商)”最低求助积分说明 805004