Emotion Recognition From Multimodal Physiological Signals via Discriminative Correlation Fusion With a Temporal Alignment Mechanism

判别式 典型相关 人工智能 计算机科学 机制(生物学) 模式识别(心理学) 融合机制 相关性 情感计算 模式 融合 机器学习 数学 哲学 语言学 几何学 认识论 脂质双层融合 社会科学 社会学
作者
Kechen Hou,Xiaowei Zhang,Yikun Yang,Qiqi Zhao,Wenjie Yuan,Zhongyi Zhou,Sipo Zhang,Chen Li,Jian Shen,Bin Hu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (5): 3079-3092 被引量:11
标识
DOI:10.1109/tcyb.2023.3320107
摘要

Modeling correlations between multimodal physiological signals e.g., canonical correlation analysis (CCA) for emotion recognition has attracted much attention. However, existing studies rarely consider the neural nature of emotional responses within physiological signals. Furthermore, during fusion space construction, the CCA method maximizes only the correlations between different modalities and neglects the discriminative information of different emotional states. Most importantly, temporal mismatches between different neural activities are often ignored; therefore, the theoretical assumptions that multimodal data should be aligned in time and space before fusion are not fulfilled. To address these issues, we propose a discriminative correlation fusion method coupled with a temporal alignment mechanism for multimodal physiological signals. We first use neural signal analysis techniques to construct neural representations of the central nervous system (CNS) and autonomic nervous system (ANS). respectively. Then, emotion class labels are introduced in CCA to obtain more discriminative fusion representations from multimodal neural responses, and the temporal alignment between the CNS and ANS is jointly optimized with a fusion procedure that applies the Bayesian algorithm. The experimental results demonstrate that our method significantly improves the emotion recognition performance. Additionally, we show that this fusion method can model the underlying mechanisms in human nervous systems during emotional responses, and our results are consistent with prior findings. This study may guide a new approach for exploring human cognitive function based on physiological signals at different time scales and promote the development of computational intelligence and harmonious human–computer interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JXY发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
杰卿完成签到,获得积分10
1秒前
yz123发布了新的文献求助10
2秒前
3秒前
爆米花应助狗宅采纳,获得10
3秒前
兔兔不睡觉完成签到 ,获得积分10
3秒前
今后应助Cc采纳,获得10
3秒前
4秒前
wu发布了新的文献求助10
4秒前
hhh发布了新的文献求助10
4秒前
101发布了新的文献求助10
4秒前
4秒前
aich完成签到,获得积分10
5秒前
伶俐雪曼完成签到,获得积分10
5秒前
牧之完成签到,获得积分10
5秒前
YJ888发布了新的文献求助10
5秒前
乌冬面发布了新的文献求助20
6秒前
伞兵龙发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
丰富山柏完成签到,获得积分20
9秒前
Hello应助yz123采纳,获得10
10秒前
共享精神应助白若可依采纳,获得10
10秒前
研雪完成签到,获得积分10
10秒前
関电脑完成签到,获得积分10
10秒前
10秒前
Lucas应助mode采纳,获得10
10秒前
鲸鱼发布了新的文献求助10
11秒前
彭于晏应助mika采纳,获得10
11秒前
dxp发布了新的文献求助10
11秒前
Soul发布了新的文献求助10
11秒前
开元完成签到,获得积分10
11秒前
负责石头发布了新的文献求助10
12秒前
李爱国应助反方向的钟采纳,获得30
12秒前
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646