Infield corn kernel detection using image processing, machine learning, and deep learning methodologies under natural lighting

人工智能 计算机科学 机器学习 目标检测 RGB颜色模型 深度学习 核(代数) 图像处理 支持向量机 机器视觉 阈值 模式识别(心理学) 计算机视觉 图像(数学) 数学 组合数学
作者
Xiaohang Liu,Zhao Zhang,C. Igathinathane,Paulo Flores,Man Zhang,H. Li,Xiongzhe Han,Tuan M. Ha,Yiannis Ampatzidis,Hak-Jin Kim
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122278-122278 被引量:9
标识
DOI:10.1016/j.eswa.2023.122278
摘要

Machine vision has been increasingly used to address agricultural issues. One such case is corn field harvest losses and image-based object detection approaches, namely image processing, machine learning, and deep learning were investigated to detect and count infield corn kernels, immediately after harvest for combine harvester performance evaluation. A hand-held low-cost RGB camera was used to collect images with kernels of different backgrounds, based on which a 420 images dataset (200, 40, and 180 for training, validation, and testing, respectively) was generated. Three different models for kernel detection were constructed based on image processing, machine learning, and deep learning. For the imaging processing method, the images were preprocessed (color thresholding, graying, and erosion), followed by Hough circle detection to identify kernels. For the machine learning (cascade detector) and deep learning (Mask R-CNN, EfficientDet, YOLOv5, and YOLOX), models were trained, validated, and tested. Experimental results showed the overall performance of the deep learning network YOLOv5 was superior to the other approaches, with a small model size (89.3MB) and a high model average precision (78.3%) for object detection. The detection accuracy, undetection rate and F1 value were 90.7%, 9.3%, and 91.1%, respectively, and the average detection rate was 55 fps. This study demonstrates that the YOLOv5 model has the potential to be used as a real-time, reliable, and robust method for infield corn kernel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明无敌小腚宝完成签到,获得积分10
刚刚
wz完成签到 ,获得积分10
刚刚
英俊的铭应助CHL5722采纳,获得10
1秒前
2秒前
2秒前
zj发布了新的文献求助10
2秒前
南枝完成签到,获得积分10
2秒前
科研通AI5应助qwe31533采纳,获得30
2秒前
科目三应助yukky采纳,获得10
2秒前
campus完成签到,获得积分10
2秒前
Lucas应助glycine采纳,获得10
3秒前
山君完成签到 ,获得积分10
3秒前
如意草丛完成签到,获得积分10
3秒前
深情安青应助风起采纳,获得10
3秒前
何照人完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
洪艳发布了新的文献求助30
4秒前
Herman发布了新的文献求助10
4秒前
4秒前
孙悟空大巨人完成签到,获得积分10
5秒前
sptyzl完成签到 ,获得积分10
5秒前
5秒前
蛋白发布了新的文献求助10
6秒前
6秒前
7秒前
难过白易完成签到,获得积分10
7秒前
8秒前
汉堡包应助ZYao65采纳,获得10
8秒前
fighting完成签到,获得积分20
8秒前
打打应助Cindy采纳,获得10
8秒前
小哥完成签到,获得积分10
9秒前
善学以致用应助小浣熊采纳,获得10
9秒前
Alex应助123采纳,获得20
10秒前
10秒前
JQing应助就晚安喽采纳,获得10
10秒前
霞霞发布了新的文献求助10
10秒前
科目三应助白菜也挺贵采纳,获得10
10秒前
七七发布了新的文献求助10
10秒前
圈哥完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513