已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EPtask: Deep Reinforcement Learning Based Energy-Efficient and Priority-Aware Task Scheduling for Dynamic Vehicular Edge Computing

计算机科学 强化学习 动态优先级调度 调度(生产过程) 能源消耗 分布式计算 实时计算 公平份额计划 服务质量 计算机网络 数学优化 人工智能 工程类 数学 电气工程
作者
Peisong Li,Ziren Xiao,Xinheng Wang,Kaizhu Huang,Yi Huang,Xinheng Wang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 1830-1846 被引量:20
标识
DOI:10.1109/tiv.2023.3321679
摘要

The increasing complexity of vehicles has led to a growing demand for in-vehicle services that rely on multiple sensors. In the Vehicular Edge Computing (VEC) paradigm, energy-efficient task scheduling is critical to achieving optimal completion time and energy consumption. Although extensive research has been conducted in this field, challenges remain in meeting the requirements of time-sensitive services and adapting to dynamic traffic environments. In this context, a novel algorithm called Multi-action and Environment-adaptive Proximal Policy Optimization algorithm (MEPPO) is designed based on the conventional PPO algorithm and then a joint task scheduling and resource allocation method is proposed based on the designed MEPPO algorithm. In specific, the method involves three core aspects. Firstly, task scheduling strategy is designed to generate task offloading decisions and priority assignment decisions for the tasks utilizing PPO algorithm, which can further reduce the completion time of service requests. Secondly, transmit power allocation scheme is designed considering the expected transmission distance among vehicles and edge servers, which can minimize transmission energy consumption by adjusting the allocated transmit power dynamically. Thirdly, the proposed MEPPO-based scheduling method can make scheduling decisions for vehicles with different numbers of tasks by manipulating the state space of the PPO algorithm, which makes the proposed method be adaptive to real-world dynamic VEC environment. At last, the effectiveness of the proposed method is demonstrated through extensive simulation and on-site experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啾啾发布了新的文献求助100
刚刚
moiaoh完成签到,获得积分10
2秒前
2秒前
4秒前
8秒前
科研通AI5应助啾啾采纳,获得10
10秒前
胡一刀完成签到,获得积分10
11秒前
dreamboat完成签到,获得积分10
12秒前
12秒前
梁梁完成签到 ,获得积分10
14秒前
14秒前
沉静乾发布了新的文献求助10
14秒前
15秒前
17秒前
梁海萍发布了新的文献求助10
17秒前
EKo完成签到,获得积分10
18秒前
情怀应助zjx采纳,获得10
18秒前
畅快枕头完成签到 ,获得积分0
19秒前
SciHub完成签到 ,获得积分10
19秒前
草莓熊1215完成签到 ,获得积分10
20秒前
彭于晏应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
21秒前
爆米花应助科研通管家采纳,获得30
21秒前
李文豪发布了新的文献求助10
21秒前
唐泽雪穗发布了新的文献求助100
23秒前
24秒前
山山完成签到 ,获得积分10
27秒前
27秒前
哲000完成签到 ,获得积分10
28秒前
土豆小胖子完成签到,获得积分10
28秒前
CC完成签到 ,获得积分10
29秒前
zjx完成签到,获得积分10
29秒前
30秒前
SCINEXUS完成签到,获得积分0
32秒前
吴雨茜发布了新的文献求助10
35秒前
linkman发布了新的文献求助10
35秒前
胖莹完成签到 ,获得积分10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925756
求助须知:如何正确求助?哪些是违规求助? 4195911
关于积分的说明 13031268
捐赠科研通 3967492
什么是DOI,文献DOI怎么找? 2174627
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101628