EPtask: Deep Reinforcement Learning Based Energy-Efficient and Priority-Aware Task Scheduling for Dynamic Vehicular Edge Computing

计算机科学 强化学习 动态优先级调度 调度(生产过程) 能源消耗 分布式计算 实时计算 公平份额计划 服务质量 计算机网络 数学优化 人工智能 工程类 数学 电气工程
作者
Peisong Li,Ziren Xiao,Xinheng Wang,Kaizhu Huang,Yi Huang,Xinheng Wang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 1830-1846 被引量:20
标识
DOI:10.1109/tiv.2023.3321679
摘要

The increasing complexity of vehicles has led to a growing demand for in-vehicle services that rely on multiple sensors. In the Vehicular Edge Computing (VEC) paradigm, energy-efficient task scheduling is critical to achieving optimal completion time and energy consumption. Although extensive research has been conducted in this field, challenges remain in meeting the requirements of time-sensitive services and adapting to dynamic traffic environments. In this context, a novel algorithm called Multi-action and Environment-adaptive Proximal Policy Optimization algorithm (MEPPO) is designed based on the conventional PPO algorithm and then a joint task scheduling and resource allocation method is proposed based on the designed MEPPO algorithm. In specific, the method involves three core aspects. Firstly, task scheduling strategy is designed to generate task offloading decisions and priority assignment decisions for the tasks utilizing PPO algorithm, which can further reduce the completion time of service requests. Secondly, transmit power allocation scheme is designed considering the expected transmission distance among vehicles and edge servers, which can minimize transmission energy consumption by adjusting the allocated transmit power dynamically. Thirdly, the proposed MEPPO-based scheduling method can make scheduling decisions for vehicles with different numbers of tasks by manipulating the state space of the PPO algorithm, which makes the proposed method be adaptive to real-world dynamic VEC environment. At last, the effectiveness of the proposed method is demonstrated through extensive simulation and on-site experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jetwang给jetwang的求助进行了留言
刚刚
Lucas应助璎琅玉微凉采纳,获得10
刚刚
1秒前
时来运转完成签到,获得积分10
1秒前
一碗鱼完成签到,获得积分10
1秒前
orixero应助illusion采纳,获得10
1秒前
柳絮吹雪完成签到,获得积分10
2秒前
2秒前
WXP发布了新的文献求助10
2秒前
2秒前
yy发布了新的文献求助10
2秒前
今晚月色很美完成签到,获得积分10
2秒前
sfx完成签到,获得积分10
2秒前
852应助清脆的连虎采纳,获得10
3秒前
3秒前
Ayao完成签到,获得积分10
3秒前
iNk应助excellent采纳,获得20
3秒前
tourist585完成签到,获得积分10
3秒前
小兔子乖乖完成签到,获得积分10
3秒前
4秒前
banfen完成签到,获得积分10
4秒前
1104发布了新的文献求助10
4秒前
山复尔尔关注了科研通微信公众号
4秒前
4秒前
山复尔尔关注了科研通微信公众号
5秒前
5秒前
时来运转发布了新的文献求助10
5秒前
格格萧发布了新的文献求助10
5秒前
传奇3应助vinni采纳,获得10
6秒前
6秒前
6秒前
iNk应助Droit采纳,获得20
6秒前
科目三应助乐观的海采纳,获得10
6秒前
英吉利25发布了新的文献求助10
7秒前
lpc完成签到 ,获得积分10
7秒前
英姑应助吕忠义采纳,获得10
7秒前
chuxu完成签到,获得积分10
7秒前
7秒前
深情安青应助qwepirt采纳,获得10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435327
求助须知:如何正确求助?哪些是违规求助? 4547445
关于积分的说明 14208426
捐赠科研通 4467598
什么是DOI,文献DOI怎么找? 2448659
邀请新用户注册赠送积分活动 1439552
关于科研通互助平台的介绍 1416204