EPtask: Deep Reinforcement Learning Based Energy-Efficient and Priority-Aware Task Scheduling for Dynamic Vehicular Edge Computing

计算机科学 强化学习 动态优先级调度 调度(生产过程) 能源消耗 分布式计算 实时计算 公平份额计划 服务质量 计算机网络 数学优化 人工智能 工程类 数学 电气工程
作者
Peisong Li,Ziren Xiao,Xinheng Wang,Kaizhu Huang,Yi Huang,Xinheng Wang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 1830-1846 被引量:20
标识
DOI:10.1109/tiv.2023.3321679
摘要

The increasing complexity of vehicles has led to a growing demand for in-vehicle services that rely on multiple sensors. In the Vehicular Edge Computing (VEC) paradigm, energy-efficient task scheduling is critical to achieving optimal completion time and energy consumption. Although extensive research has been conducted in this field, challenges remain in meeting the requirements of time-sensitive services and adapting to dynamic traffic environments. In this context, a novel algorithm called Multi-action and Environment-adaptive Proximal Policy Optimization algorithm (MEPPO) is designed based on the conventional PPO algorithm and then a joint task scheduling and resource allocation method is proposed based on the designed MEPPO algorithm. In specific, the method involves three core aspects. Firstly, task scheduling strategy is designed to generate task offloading decisions and priority assignment decisions for the tasks utilizing PPO algorithm, which can further reduce the completion time of service requests. Secondly, transmit power allocation scheme is designed considering the expected transmission distance among vehicles and edge servers, which can minimize transmission energy consumption by adjusting the allocated transmit power dynamically. Thirdly, the proposed MEPPO-based scheduling method can make scheduling decisions for vehicles with different numbers of tasks by manipulating the state space of the PPO algorithm, which makes the proposed method be adaptive to real-world dynamic VEC environment. At last, the effectiveness of the proposed method is demonstrated through extensive simulation and on-site experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhegewa发布了新的文献求助10
1秒前
美好芳发布了新的文献求助10
1秒前
223311完成签到,获得积分10
1秒前
xixi完成签到,获得积分10
1秒前
GXNU完成签到,获得积分10
4秒前
lily88发布了新的文献求助10
5秒前
5秒前
Lucas应助Ainra采纳,获得10
5秒前
5秒前
rumeng完成签到,获得积分10
8秒前
梨米特完成签到,获得积分10
8秒前
8秒前
GXNU发布了新的文献求助10
9秒前
CodeCraft应助李朝富采纳,获得10
11秒前
11秒前
努努力完成签到,获得积分10
13秒前
研友_VZG7GZ应助美好芳采纳,获得10
13秒前
哈哈哈完成签到,获得积分10
14秒前
bkagyin应助zhegewa采纳,获得20
15秒前
15秒前
15秒前
努努力发布了新的文献求助30
16秒前
aaaaaa完成签到,获得积分10
16秒前
cyrong完成签到,获得积分10
16秒前
可爱斩完成签到 ,获得积分10
16秒前
17秒前
谨慎惋庭发布了新的文献求助10
17秒前
17秒前
yunnguw发布了新的文献求助10
18秒前
小马甲应助学习采纳,获得10
20秒前
20秒前
悦耳巧曼发布了新的文献求助10
21秒前
一昂杨发布了新的文献求助10
22秒前
xiaozhuzhu完成签到,获得积分10
24秒前
zjq发布了新的文献求助10
24秒前
发发扶完成签到,获得积分10
27秒前
Orange应助sutychen采纳,获得10
27秒前
淡淡菠萝发布了新的文献求助10
27秒前
科研不掉头发完成签到,获得积分10
28秒前
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140679
求助须知:如何正确求助?哪些是违规求助? 2791473
关于积分的说明 7799108
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302064
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194