EPtask: Deep Reinforcement Learning Based Energy-Efficient and Priority-Aware Task Scheduling for Dynamic Vehicular Edge Computing

计算机科学 强化学习 动态优先级调度 调度(生产过程) 能源消耗 分布式计算 实时计算 公平份额计划 服务质量 计算机网络 数学优化 人工智能 工程类 数学 电气工程
作者
Peisong Li,Ziren Xiao,Xinheng Wang,Kaizhu Huang,Yi Huang,Xinheng Wang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 1830-1846 被引量:20
标识
DOI:10.1109/tiv.2023.3321679
摘要

The increasing complexity of vehicles has led to a growing demand for in-vehicle services that rely on multiple sensors. In the Vehicular Edge Computing (VEC) paradigm, energy-efficient task scheduling is critical to achieving optimal completion time and energy consumption. Although extensive research has been conducted in this field, challenges remain in meeting the requirements of time-sensitive services and adapting to dynamic traffic environments. In this context, a novel algorithm called Multi-action and Environment-adaptive Proximal Policy Optimization algorithm (MEPPO) is designed based on the conventional PPO algorithm and then a joint task scheduling and resource allocation method is proposed based on the designed MEPPO algorithm. In specific, the method involves three core aspects. Firstly, task scheduling strategy is designed to generate task offloading decisions and priority assignment decisions for the tasks utilizing PPO algorithm, which can further reduce the completion time of service requests. Secondly, transmit power allocation scheme is designed considering the expected transmission distance among vehicles and edge servers, which can minimize transmission energy consumption by adjusting the allocated transmit power dynamically. Thirdly, the proposed MEPPO-based scheduling method can make scheduling decisions for vehicles with different numbers of tasks by manipulating the state space of the PPO algorithm, which makes the proposed method be adaptive to real-world dynamic VEC environment. At last, the effectiveness of the proposed method is demonstrated through extensive simulation and on-site experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qyzhu完成签到,获得积分10
刚刚
gaga完成签到,获得积分10
1秒前
GingerF应助xzy998采纳,获得50
2秒前
SherlockJia完成签到,获得积分10
3秒前
小小怪完成签到 ,获得积分10
3秒前
小城故事完成签到,获得积分10
3秒前
活泼的冬瓜完成签到,获得积分10
3秒前
善善完成签到 ,获得积分10
5秒前
研友_5Z4ZA5完成签到,获得积分10
5秒前
Q清风慕竹完成签到,获得积分10
6秒前
科研通AI6应助丘奇采纳,获得10
6秒前
badgerwithfisher完成签到,获得积分10
7秒前
可玩性完成签到 ,获得积分10
11秒前
行星一只兔完成签到 ,获得积分10
11秒前
shanshan完成签到,获得积分10
12秒前
siqilinwillbephd完成签到,获得积分10
13秒前
陈咪咪完成签到,获得积分10
15秒前
liujianxin发布了新的文献求助10
16秒前
得了MVP完成签到,获得积分10
17秒前
瘦瘦柠檬完成签到,获得积分20
18秒前
叶落无痕、完成签到,获得积分10
19秒前
123完成签到 ,获得积分10
23秒前
炳灿完成签到 ,获得积分10
23秒前
唯为完成签到,获得积分10
24秒前
jiuzhege完成签到 ,获得积分10
24秒前
24秒前
梧桐完成签到 ,获得积分10
24秒前
Akim应助konghusheng采纳,获得10
27秒前
学习完成签到 ,获得积分10
27秒前
28秒前
乐乐妈完成签到,获得积分10
28秒前
阳佟若剑完成签到,获得积分10
29秒前
会飞的猪完成签到,获得积分10
29秒前
爱读文献的小郝完成签到,获得积分10
30秒前
老白完成签到,获得积分10
31秒前
张泽龄完成签到 ,获得积分10
31秒前
李爱国应助liujianxin采纳,获得10
31秒前
bigpluto完成签到,获得积分0
32秒前
悦耳的妙竹完成签到 ,获得积分10
35秒前
阿尔法贝塔完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256332
求助须知:如何正确求助?哪些是违规求助? 4418639
关于积分的说明 13752945
捐赠科研通 4291811
什么是DOI,文献DOI怎么找? 2355152
邀请新用户注册赠送积分活动 1351564
关于科研通互助平台的介绍 1312264