Synthetic minority oversampling using edited displacement-based k-nearest neighbors

过采样 欠采样 机器学习 人工智能 计算机科学 算法 噪音(视频) 班级(哲学) 自举(财务) 水准点(测量) 数据挖掘 模式识别(心理学) 数学 图像(数学) 计算机网络 大地测量学 带宽(计算) 计量经济学 地理
作者
Alex X. Wang,Stefanka Chukova,Binh P. Nguyen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110895-110895
标识
DOI:10.1016/j.asoc.2023.110895
摘要

Skewed class proportions in real-world datasets present a challenge for machine learning algorithms, as they have a tendency to correctly categorize the majority class while incorrectly classifying the minority class. Such classification disparities hold significant implications, particularly in predictive scenarios involving minority groups, where misclassifying minority instances could lead to adverse outcomes. To tackle this, class imbalance learning has gained attention, with the Synthetic Minority Oversampling Technique (SMOTE) being a notable approach that addresses class imbalance by generating synthetic instances for the minority class based on their feature space neighbors. Despite its effectiveness and simplicity, SMOTE is known to suffer from a noise propagation issue where noisy and uninformative samples are introduced. While various SMOTE variants, including hybrids with undersampling, have been developed to tackle this problem, identifying noisy samples in complex real-world datasets remains a challenge. To address this, our study introduces a new SMOTE-based hybrid approach called SMOTE-centroid displacement-based k-NN (SMOTE-CDNN). SMOTE-CDNN employs centroid displacement for class prediction, which is more robust against noisy data. After SMOTE is applied, noise instances are detected and removed for clearer decision boundaries if their labels predicted by our centroid displacement-based k-NN algorithm are different from the real ones. While our experiments on 24 imbalance datasets demonstrate the resilience and efficiency of our proposed algorithm, which outperforms state-of-art resampling algorithms with various classification models, we acknowledge the need for further investigation into specific dataset characteristics and classification scenarios to determine the generalizability of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caoyy完成签到,获得积分10
1秒前
JamesPei应助独特亦旋采纳,获得10
2秒前
3秒前
3秒前
科目三应助Jenny采纳,获得50
5秒前
gry发布了新的文献求助10
6秒前
Hh发布了新的文献求助10
8秒前
Jzhang应助daniel采纳,获得10
8秒前
8秒前
夏夏发布了新的文献求助10
8秒前
jiesenya完成签到,获得积分10
10秒前
今后应助smile采纳,获得10
10秒前
万能图书馆应助wuzhizhiya采纳,获得10
11秒前
科研通AI5应助清新的静枫采纳,获得10
11秒前
applelpypies完成签到 ,获得积分10
11秒前
内向一笑完成签到 ,获得积分10
12秒前
ll完成签到,获得积分20
12秒前
12秒前
444完成签到,获得积分10
13秒前
gry完成签到,获得积分10
15秒前
15秒前
科研通AI5应助夏夏采纳,获得10
16秒前
LU完成签到 ,获得积分10
16秒前
zky0216发布了新的文献求助10
17秒前
Kin_L完成签到,获得积分10
17秒前
18秒前
一一发布了新的文献求助10
18秒前
丙队长发布了新的文献求助10
19秒前
舒适行天完成签到,获得积分10
19秒前
善学以致用应助wuyudelan采纳,获得10
21秒前
zky0216完成签到,获得积分10
21秒前
22秒前
毛豆爸爸发布了新的文献求助10
24秒前
坦率的丹烟完成签到 ,获得积分10
24秒前
风趣的梦露完成签到 ,获得积分10
24秒前
认真的南珍完成签到 ,获得积分20
25秒前
26秒前
27秒前
林森发布了新的文献求助10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824