清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modality Registration and Object Search Framework for UAV-Based Unregistered RGB-T Image Salient Object Detection

计算机视觉 人工智能 计算机科学 RGB颜色模型 模态(人机交互) 透视图(图形) 目标检测 图像配准 对象(语法) 分割 图像(数学)
作者
Kechen Song,Hongwei Wen,Xiaotong Xue,Liming Huang,Yingying Ji,Yunhui Yan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3332179
摘要

UAVs are widely used in various industries, and various visual tasks under the perspective of the UAV have been widely studied. In particular, the RGB-T detection method based on UAVs has shown significant advantages. However, existing RGB-T methods are designed based on registration image pairs rather than detecting images directly acquired by UAVs. This detection process is limited by the accuracy of image registration. And image registration wastes a lot of time. To solve the above problems, we construct an unregistered RGB-T image salient object detection (SOD) dataset under the UAV perspective, known as UAV RGB-T 2400. The dataset includes many challenging scenes, and the images are not manually registered. Further, we construct a modality registration and object search (MROS) framework for unregistered RGB-T SOD. Firstly, a modality registration scheme is proposed to solve the unregistration problem of modal features. We successively perform pixel-level registration from a local perspective and semantic-level registration from a global perspective for different modal features. And we carry out the channel and spatial interaction for the different modal features in modality registration. Aiming at the interference problem in the UAV detection environment, we propose an object search scheme. The two high-level features are used to search the object location, and the three low-level features are used to refine the object and produce prediction results. Experimental results on the UAV RGB-T 2400 dataset show that MROS is effective compared with state-of-the-art methods. The code is available at: https://github.com/VDT-2048/UAV-RGB-T-2400.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大医仁心完成签到 ,获得积分10
2秒前
NattyPoe应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
23秒前
37秒前
卓天宇完成签到,获得积分0
40秒前
量子星尘发布了新的文献求助50
43秒前
1分钟前
小李老博完成签到,获得积分10
1分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
魏猛完成签到,获得积分10
3分钟前
ilihe应助dd采纳,获得10
3分钟前
简单发布了新的文献求助20
3分钟前
dd完成签到,获得积分10
4分钟前
简单发布了新的文献求助20
5分钟前
开心每一天完成签到 ,获得积分10
5分钟前
无极微光应助简单采纳,获得20
5分钟前
6分钟前
Mio发布了新的文献求助10
6分钟前
顾矜应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
乐乐应助科研通管家采纳,获得10
6分钟前
三日发布了新的文献求助10
6分钟前
范白容完成签到 ,获得积分0
6分钟前
栀鸢完成签到,获得积分20
6分钟前
tt完成签到,获得积分10
7分钟前
Dryang完成签到 ,获得积分10
7分钟前
7分钟前
煜琪完成签到 ,获得积分10
7分钟前
三日完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788848
求助须知:如何正确求助?哪些是违规求助? 5712796
关于积分的说明 15473966
捐赠科研通 4916884
什么是DOI,文献DOI怎么找? 2646597
邀请新用户注册赠送积分活动 1594281
关于科研通互助平台的介绍 1548701