A deep learning method for autism spectrum disorder identification based on interactions of hierarchical brain networks

人工智能 Lasso(编程语言) 计算机科学 功能磁共振成像 分层数据库模型 深度学习 模式识别(心理学) 鉴定(生物学) 特征(语言学) 机器学习 自闭症谱系障碍 自闭症 心理学 神经科学 数据挖掘 生物 发展心理学 语言学 哲学 植物 万维网
作者
Ning Qiang,Jie Gao,Qinglin Dong,Jin Li,Shu Zhang,Hongtao Liang,Yifei Sun,Bao Ge,Zhengliang Liu,Zihao Wu,Tianming Liu,Huiji Yue,Shijie Zhao
出处
期刊:Behavioural Brain Research [Elsevier]
卷期号:452: 114603-114603 被引量:10
标识
DOI:10.1016/j.bbr.2023.114603
摘要

It has been recently shown that deep learning models exhibited remarkable performance of representing functional Magnetic Resonance Imaging (fMRI) data for the understanding of brain functional activities. With hierarchical structure, deep learning models can infer hierarchical functional brain networks (FBN) from fMRI. However, the applications of the hierarchical FBNs have been rarely studied.In this work, we proposed a hierarchical recurrent variational auto-encoder (HRVAE) to unsupervisedly model the fMRI data. The trained HRVAE encoder can predict hierarchical temporal features from its three hidden layers, and thus can be regarded as a hierarchical feature extractor. Then LASSO (least absolute shrinkage and selection operator) regression was applied to estimate the corresponding hierarchical FBNs. Based on the hierarchical FBNs from each subject, we constructed a novel classification framework for brain disorder identification and test it on the Autism Brain Imaging Data Exchange (ABIDE) dataset, a world-wide multi-site database of autism spectrum disorder (ASD). We analyzed the hierarchy organization of FBNs, and finally used the overlaps of hierarchical FBNs as features to differentiate ASD from typically developing controls (TDC).The experimental results on 871 subjects from ABIDE dataset showed that the HRVAE model can effectively derive hierarchical FBNs including many well-known resting state networks (RSN). Moreover, the classification result improved the state-of-the-art by achieving a very high accuracy of 82.1 %.This work presents a novel data-driven deep learning method using fMRI data for ASD identification, which could provide valuable reference for clinical diagnosis. The classification results suggest that the interactions of hierarchical FBNs have association with brain disorder, which promotes the understanding of FBN hierarchy and could be applied to other brain disorder analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234完成签到,获得积分10
刚刚
皮皮发布了新的文献求助30
2秒前
Kristal完成签到,获得积分10
2秒前
12341完成签到,获得积分10
2秒前
zsyzxb完成签到,获得积分20
3秒前
nonkul发布了新的文献求助10
3秒前
孟石三发布了新的文献求助10
4秒前
笨小孩完成签到,获得积分10
7秒前
AA发布了新的文献求助10
9秒前
10秒前
ctwcrew发布了新的文献求助10
11秒前
11秒前
12秒前
儒雅的傲芙完成签到,获得积分10
12秒前
JamesPei应助老王爱学习采纳,获得10
13秒前
14秒前
14秒前
16秒前
南小琴发布了新的文献求助10
16秒前
18秒前
所所应助nonkul采纳,获得10
18秒前
白刀发布了新的文献求助10
18秒前
18秒前
ctwcrew完成签到,获得积分10
19秒前
20秒前
平常从蓉发布了新的文献求助10
21秒前
积极慕梅应助yaya采纳,获得10
21秒前
谨慎的雨旋完成签到 ,获得积分10
22秒前
keeper王发布了新的文献求助10
25秒前
sky焰发布了新的文献求助50
27秒前
28秒前
8R60d8应助利好采纳,获得10
28秒前
30秒前
努力飞的麻雀完成签到,获得积分10
30秒前
潜龙完成签到,获得积分10
30秒前
CarterXD完成签到,获得积分10
30秒前
子墨完成签到,获得积分10
31秒前
haichao1发布了新的文献求助10
31秒前
31秒前
Amazing发布了新的文献求助30
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237