A deep learning method for autism spectrum disorder identification based on interactions of hierarchical brain networks

人工智能 Lasso(编程语言) 计算机科学 功能磁共振成像 分层数据库模型 深度学习 模式识别(心理学) 鉴定(生物学) 特征(语言学) 机器学习 自闭症谱系障碍 自闭症 心理学 神经科学 数据挖掘 生物 发展心理学 语言学 哲学 植物 万维网
作者
Ning Qiang,Jie Gao,Qinglin Dong,Jin Li,Shu Zhang,Hongtao Liang,Yifei Sun,Bao Ge,Zhengliang Liu,Zihao Wu,Tianming Liu,Huiji Yue,Shijie Zhao
出处
期刊:Behavioural Brain Research [Elsevier BV]
卷期号:452: 114603-114603 被引量:10
标识
DOI:10.1016/j.bbr.2023.114603
摘要

It has been recently shown that deep learning models exhibited remarkable performance of representing functional Magnetic Resonance Imaging (fMRI) data for the understanding of brain functional activities. With hierarchical structure, deep learning models can infer hierarchical functional brain networks (FBN) from fMRI. However, the applications of the hierarchical FBNs have been rarely studied.In this work, we proposed a hierarchical recurrent variational auto-encoder (HRVAE) to unsupervisedly model the fMRI data. The trained HRVAE encoder can predict hierarchical temporal features from its three hidden layers, and thus can be regarded as a hierarchical feature extractor. Then LASSO (least absolute shrinkage and selection operator) regression was applied to estimate the corresponding hierarchical FBNs. Based on the hierarchical FBNs from each subject, we constructed a novel classification framework for brain disorder identification and test it on the Autism Brain Imaging Data Exchange (ABIDE) dataset, a world-wide multi-site database of autism spectrum disorder (ASD). We analyzed the hierarchy organization of FBNs, and finally used the overlaps of hierarchical FBNs as features to differentiate ASD from typically developing controls (TDC).The experimental results on 871 subjects from ABIDE dataset showed that the HRVAE model can effectively derive hierarchical FBNs including many well-known resting state networks (RSN). Moreover, the classification result improved the state-of-the-art by achieving a very high accuracy of 82.1 %.This work presents a novel data-driven deep learning method using fMRI data for ASD identification, which could provide valuable reference for clinical diagnosis. The classification results suggest that the interactions of hierarchical FBNs have association with brain disorder, which promotes the understanding of FBN hierarchy and could be applied to other brain disorder analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔苏惠娜完成签到,获得积分10
刚刚
manman完成签到,获得积分10
1秒前
棋士发布了新的文献求助10
1秒前
不挤牙膏发布了新的文献求助10
1秒前
cola完成签到,获得积分10
1秒前
爱学习的小凌完成签到,获得积分10
2秒前
成就小懒虫完成签到,获得积分10
2秒前
2秒前
kathy完成签到,获得积分10
3秒前
3秒前
hky完成签到,获得积分10
3秒前
小二郎应助qiuqiu采纳,获得10
3秒前
坦率的冥王星完成签到,获得积分10
4秒前
4秒前
黄昏完成签到,获得积分10
4秒前
Anoxia完成签到,获得积分10
4秒前
一一完成签到,获得积分10
5秒前
脑洞疼应助小杨采纳,获得50
5秒前
5秒前
Likx完成签到,获得积分10
5秒前
苏博儿完成签到,获得积分10
5秒前
大脸猫完成签到 ,获得积分10
6秒前
感动归尘完成签到,获得积分10
7秒前
苹果谷兰发布了新的文献求助10
7秒前
54489完成签到,获得积分10
7秒前
Hello应助king采纳,获得10
8秒前
8秒前
changhaowenzzz完成签到,获得积分10
8秒前
牧羊少年完成签到,获得积分10
8秒前
可爱的函函应助尹晓敏采纳,获得10
8秒前
Danni发布了新的文献求助10
10秒前
多罗罗完成签到,获得积分10
11秒前
mmm完成签到 ,获得积分10
11秒前
小豆包完成签到,获得积分20
11秒前
科研喵完成签到,获得积分10
12秒前
儒雅的夏山完成签到,获得积分10
12秒前
诸岩完成签到,获得积分10
13秒前
LZ发布了新的文献求助10
13秒前
善学以致用应助勤劳念薇采纳,获得10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953623
求助须知:如何正确求助?哪些是违规求助? 3499390
关于积分的说明 11095224
捐赠科研通 3229945
什么是DOI,文献DOI怎么找? 1785807
邀请新用户注册赠送积分活动 869573
科研通“疑难数据库(出版商)”最低求助积分说明 801479