A novel self-boosting dual-branch model for pedestrian attribute recognition

计算机科学 特征(语言学) 行人 块(置换群论) 人工智能 模式识别(心理学) 代表(政治) 行人检测 Boosting(机器学习) 比例(比率) 数据挖掘 工程类 数学 哲学 几何学 物理 法学 政治 量子力学 语言学 运输工程 政治学
作者
Yilu Cao,Yuchun Fang,Yaofang Zhang,Xiaoyu Hou,Kunlin Zhang,Wei Huang
出处
期刊:Signal Processing-image Communication [Elsevier BV]
卷期号:115: 116961-116961 被引量:2
标识
DOI:10.1016/j.image.2023.116961
摘要

Pedestrian attributes carry broad information of abstract and detailed annotations. Pedestrian attribute recognition (PAR) can generate high-level semantic feature maps and provide auxiliary information in tasks such as person retrieval and re-identification. Since pedestrian attributes have broad categories and appear in complex region combinations in video sequences, enhancing the feature representation of fine-grained attributes is the key to improving pedestrian attribute recognition. This paper proposes an end-to-end feature-enhanced multi-scale dual-branch model for multiple attributes recognition (FEMDAR) with a feature-enhanced block (FEB) and multi-scale modules. The FEB module fuses the contextual features of each level, stacking different rates of dilated convolutions to expand the receptive field of the feature expression effectively. Simultaneously, the feature-enhanced block module utilizes a dual-branch structure to incorporate enhanced feature representation. Moreover, a new residual module is designed with multi-scale modules to extract the inconsistency in various attribute scales. Hence, the proposed model can achieve robust feature representation that can flexibly adapt to multiple pedestrian attributes of different scales. We validate our model on three public large-scale pedestrian attribute datasets. The experimental results show that the FEMDAR model shows prominent advantages in instance-based measurements. Furthermore, the ablation study shows the effectiveness of the proposed FEB and multi-scale modules in feature presentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Orange应助LCFXR采纳,获得10
2秒前
mm完成签到,获得积分10
6秒前
ding应助omega采纳,获得10
6秒前
Hang发布了新的文献求助30
6秒前
cdercder应助jj采纳,获得10
6秒前
渤海少年发布了新的文献求助10
7秒前
你柿不柿莓柿完成签到,获得积分10
8秒前
花花完成签到,获得积分10
9秒前
塇塇完成签到,获得积分10
10秒前
12秒前
998完成签到,获得积分10
15秒前
大模型应助阿布采纳,获得10
16秒前
16秒前
科研狗发布了新的文献求助10
17秒前
17秒前
汉堡包应助渤海少年采纳,获得10
18秒前
感动城发布了新的文献求助10
18秒前
扶溪筠完成签到,获得积分10
19秒前
998发布了新的文献求助10
20秒前
21秒前
小章完成签到,获得积分10
21秒前
隐形曼青应助多肉丸子采纳,获得10
21秒前
21秒前
蕾蕾完成签到 ,获得积分10
22秒前
23秒前
希望天下0贩的0应助wangyang采纳,获得10
23秒前
时来运转完成签到 ,获得积分10
24秒前
任驰骋发布了新的文献求助10
24秒前
FBI911应助haoliu采纳,获得10
25秒前
jjz发布了新的文献求助10
26秒前
眯眯眼的海完成签到,获得积分10
27秒前
27秒前
Sarah完成签到,获得积分10
27秒前
光亮夏兰发布了新的文献求助10
28秒前
29秒前
29秒前
顾矜应助zuizui采纳,获得10
30秒前
HEIKU应助破特头采纳,获得10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734603
求助须知:如何正确求助?哪些是违规求助? 3278545
关于积分的说明 10009929
捐赠科研通 2995186
什么是DOI,文献DOI怎么找? 1643254
邀请新用户注册赠送积分活动 781019
科研通“疑难数据库(出版商)”最低求助积分说明 749199