Probabilistic-based discrete model for the seismic fragility assessment of masonry structures

砖石建筑 脆弱性 拉丁超立方体抽样 概率逻辑 结构工程 均质化(气候) 有限元法 计算机科学 无筋砌体房屋 工程类 数学 蒙特卡罗方法 物理 生物多样性 统计 热力学 人工智能 生物 生态学
作者
Luís C. Silva,Gabriele Milani,Paulo B. Lourénço
出处
期刊:Structures [Elsevier]
卷期号:52: 506-523 被引量:13
标识
DOI:10.1016/j.istruc.2023.04.015
摘要

Classical Finite-Element and Discrete-Element strategies are expensive to carry when analysing masonry structures in the inelastic range, under a seismic excitation, and considering uncertainty. Their application to the seismic fragility assessment of masonry structures through non-linear time-history analysis becomes thus a challenge. The paper addresses such difficulty by presenting an alternative probabilistic-based numerical strategy. The strategy couples a discrete macro-element model at a structural-scale with a homogenization model at a meso-scale. A probabilistic nature is guaranteed through a forward propagation of uncertainty through loading, material, mechanical, and geometrical parameters. An incremental dynamic analysis is adopted, in which several assumptions decrease the required computational time-costs. A random mechanical response of masonry is provided by numerical homogenization, using Latin hypercube sampling with a non-identity correlation matrix, and only a reduced number of representative random samples are transferred to the macro-scale. The approach was applied to the seismic fragility assessment of an English-bond masonry mock-up. Its effectiveness was demonstrated, and its computational attractiveness highlighted. Results may foster its use within the seismic fragility assessment of larger structures, and the opportunity to better analyze the effect of material and geometric-based uncertainties in the stochastic dynamic response of masonry structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LILI发布了新的文献求助10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
桐桐应助轻松大象采纳,获得10
5秒前
默鱼发布了新的文献求助10
5秒前
隐形曼青应助卷儿w采纳,获得30
6秒前
烂漫宝贝完成签到,获得积分10
6秒前
搜集达人应助林登万采纳,获得10
6秒前
7秒前
英姑应助ORAzzz采纳,获得10
7秒前
阳光完成签到,获得积分10
7秒前
pzh完成签到,获得积分10
7秒前
今日最佳上好佳完成签到,获得积分10
7秒前
7秒前
7秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
在水一方应助科研通管家采纳,获得20
8秒前
今后应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
Orange应助wh采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
8秒前
李健应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
9秒前
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914