Multi-symmetry high-entropy relaxor ferroelectric with giant capacitive energy storage

材料科学 铁电性 电容感应 凝聚态物理 储能 对称(几何) 熵(时间箭头) 工程物理 光电子学 热力学 电气工程 物理 工程类 电介质 功率(物理) 数学 几何学
作者
Jian Guo,Huifen Yu,Yifeng Ren,He Qi,Xinrui Yang,Yu Deng,Shan‐Tao Zhang,Jun Chen
出处
期刊:Nano Energy [Elsevier BV]
卷期号:112: 108458-108458 被引量:126
标识
DOI:10.1016/j.nanoen.2023.108458
摘要

Relaxor ferroelectric ceramics with remarkable energy storage performance, which is dominantly determined by polarization and breakdown strength, are one of the bottlenecks for next generation high/pulsed power dielectric capacitors. Herein, we report that high-entropy composition Li2CO3-densified Bi0.2Na0.2Ba0.2Sr0.2Ca0.2TiO3 achieves a giant recoverable energy density (Wrec) of 10.7 J/cm3 and an ultrahigh efficiency (η) of 89 %. To understand the mechanism, the influence of the high-entropy effect on atomic-scale polarization configuration and macroscale electrical properties has been investigated systematically. Randomly distributed A-site ions and B-site ions form complex interactions, which lead to coexisted atomic-scale low crystallographic symmetries, and thus, high-dynamic polar nanoregions as well as “intermediate polarization”, such multiple symmetry polarization configuration ensures fast and strong polarization response. On the other hand, the high-entropy system exhibits a wide band gap, helping to reduce conductivity and delay breakdown. Moreover, stable high-entropy structure brings great advantages for enhancing the thermal/frequency stability of energy storage performance. This work not only provides a material candidate with outstanding comprehensive energy storage performance but also affirms high-entropy approach is a shortcut to optimizing functional property by multi-scale interactions between polarization, microstructure and crystal structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xmhxpz发布了新的文献求助10
1秒前
嘿猪聪明完成签到,获得积分10
1秒前
懵懂的绿茶完成签到,获得积分10
1秒前
蜡笔小新完成签到,获得积分10
1秒前
夏熠完成签到,获得积分10
2秒前
乐观化蛹完成签到,获得积分10
2秒前
传奇3应助超级盼海采纳,获得50
2秒前
3秒前
fang完成签到,获得积分10
3秒前
Maggie完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
啊哦完成签到 ,获得积分10
4秒前
会飞的猪发布了新的文献求助10
6秒前
7秒前
科研通AI5应助神勇太清采纳,获得10
8秒前
Rain_BJ完成签到,获得积分10
8秒前
9秒前
爱听歌的依霜完成签到,获得积分10
9秒前
skj你考六级完成签到,获得积分10
10秒前
simon完成签到,获得积分10
10秒前
汉堡包应助qq采纳,获得10
11秒前
hhhhh哈哈哈完成签到,获得积分10
11秒前
欧皇降霖发布了新的文献求助10
12秒前
慕青应助会飞的猪采纳,获得10
13秒前
Muller完成签到,获得积分10
14秒前
蜡笔小新发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
chen完成签到,获得积分10
16秒前
17秒前
天天快乐应助饱满的亦旋采纳,获得10
17秒前
砰砰彭发布了新的文献求助10
18秒前
19秒前
潮汐发布了新的文献求助10
19秒前
20秒前
浮游应助程青青采纳,获得10
20秒前
野性的山雁关注了科研通微信公众号
20秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143226
求助须知:如何正确求助?哪些是违规求助? 4341244
关于积分的说明 13519986
捐赠科研通 4181483
什么是DOI,文献DOI怎么找? 2293009
邀请新用户注册赠送积分活动 1293582
关于科研通互助平台的介绍 1236234