龙格-库塔方法
放松(心理学)
数学
极限(数学)
应用数学
对角线的
理论(学习稳定性)
常微分方程的数值方法
指数稳定性
空格(标点符号)
守恒定律
数学分析
计算机科学
微分方程
常微分方程
几何学
物理
非线性系统
搭配法
机器学习
量子力学
操作系统
心理学
社会心理学
出处
期刊:Cornell University - arXiv
日期:2010-01-01
被引量:5
标识
DOI:10.48550/arxiv.1009.2757
摘要
We consider new implicit-explicit (IMEX) Runge-Kutta methods for hyperbolic systems of conservation laws with stiff relaxation terms. The explicit part is treated by a strong-stability-preserving (SSP) scheme, and the implicit part is treated by an L-stable diagonally implicit Runge-Kutta methods (DIRK). The schemes proposed are asymptotic preserving (AP) in the zero relaxation limit. High accuracy in space is obtained by Weighted Essentially Non Oscillatory (WENO) reconstruction. After a description of the mathematical properties of the schemes, several applications will be presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI