EEGDnet: Fusing non-local and local self-similarity for EEG signal denoising with transformer

计算机科学 人工智能 脑电图 模式识别(心理学) 降噪 脑-机接口 相似性(几何) 卷积神经网络 噪音(视频) 离群值 信号(编程语言) 语音识别 图像(数学) 心理学 精神科 程序设计语言
作者
Xiaorong Pu,Peng Yi,Kecheng Chen,Zhaoqi Ma,Di Zhao,Yazhou Ren
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106248-106248 被引量:28
标识
DOI:10.1016/j.compbiomed.2022.106248
摘要

Electroencephalogram (EEG) has shown a useful approach to produce a brain–computer interface (BCI). One-dimensional (1-D) EEG signal is yet easily disturbed by certain artifacts (a.k.a. noise) due to the high temporal resolution. Thus, it is crucial to remove the noise in received EEG signal. Recently, deep learning-based EEG signal denoising approaches have achieved impressive performance compared with traditional ones. It is well known that the characteristics of self-similarity (including non-local and local ones) of data (e.g., natural images and time-domain signals) are widely leveraged for denoising. However, existing deep learning-based EEG signal denoising methods ignore either the non-local self-similarity (e.g., 1-D convolutional neural network) or local one (e.g., fully connected network and recurrent neural network). To address this issue, we propose a novel 1-D EEG signal denoising network with 2-D transformer, namely EEGDnet. Specifically, we comprehensively take into account the non-local and local self-similarity of EEG signal through the transformer module. By fusing non-local self-similarity in self-attention blocks and local self-similarity in feed forward blocks, the negative impact caused by noises and outliers can be reduced significantly. Extensive experiments show that, compared with other state-of-the-art models, EEGDnet achieves much better performance in terms of both quantitative and qualitative metrics. Specifically, EEGDnet can achieve 18% and 11% improvements in correlation coefficients when removing ocular artifacts and muscle artifacts, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cullen完成签到 ,获得积分20
刚刚
pqy发布了新的文献求助10
刚刚
田様应助ppkdc采纳,获得10
刚刚
择一完成签到,获得积分10
刚刚
1秒前
又又完成签到,获得积分10
1秒前
zzzyyyuuu完成签到 ,获得积分10
1秒前
1秒前
2秒前
以柠发布了新的文献求助30
3秒前
无花果应助西瓜采纳,获得10
3秒前
芸沐发布了新的文献求助10
3秒前
max发布了新的文献求助10
3秒前
孙刚发布了新的文献求助10
4秒前
叮当发布了新的文献求助10
4秒前
舒心的依风完成签到,获得积分10
4秒前
专业美女制造完成签到,获得积分10
4秒前
cure发布了新的文献求助10
4秒前
4秒前
薇薇安发布了新的文献求助10
5秒前
5秒前
ZZZ完成签到,获得积分10
5秒前
禁止通行发布了新的文献求助10
5秒前
酷酷的傲之完成签到,获得积分10
6秒前
Ava应助枝江小学生采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
Clown完成签到,获得积分10
8秒前
8秒前
囿于一隅完成签到,获得积分10
9秒前
9秒前
酒笙完成签到,获得积分10
10秒前
Ava应助活泼的寄风采纳,获得10
11秒前
寒冷的世界完成签到 ,获得积分10
11秒前
行7发布了新的文献求助10
11秒前
帕尼灬尼发布了新的文献求助10
11秒前
Owen应助江边鸟采纳,获得30
11秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635