已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EEGDnet: Fusing non-local and local self-similarity for EEG signal denoising with transformer

计算机科学 人工智能 脑电图 模式识别(心理学) 降噪 脑-机接口 相似性(几何) 卷积神经网络 噪音(视频) 离群值 信号(编程语言) 语音识别 图像(数学) 心理学 精神科 程序设计语言
作者
Xiaorong Pu,Peng Yi,Kecheng Chen,Zhaoqi Ma,Di Zhao,Yazhou Ren
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106248-106248 被引量:17
标识
DOI:10.1016/j.compbiomed.2022.106248
摘要

Electroencephalogram (EEG) has shown a useful approach to produce a brain–computer interface (BCI). One-dimensional (1-D) EEG signal is yet easily disturbed by certain artifacts (a.k.a. noise) due to the high temporal resolution. Thus, it is crucial to remove the noise in received EEG signal. Recently, deep learning-based EEG signal denoising approaches have achieved impressive performance compared with traditional ones. It is well known that the characteristics of self-similarity (including non-local and local ones) of data (e.g., natural images and time-domain signals) are widely leveraged for denoising. However, existing deep learning-based EEG signal denoising methods ignore either the non-local self-similarity (e.g., 1-D convolutional neural network) or local one (e.g., fully connected network and recurrent neural network). To address this issue, we propose a novel 1-D EEG signal denoising network with 2-D transformer, namely EEGDnet. Specifically, we comprehensively take into account the non-local and local self-similarity of EEG signal through the transformer module. By fusing non-local self-similarity in self-attention blocks and local self-similarity in feed forward blocks, the negative impact caused by noises and outliers can be reduced significantly. Extensive experiments show that, compared with other state-of-the-art models, EEGDnet achieves much better performance in terms of both quantitative and qualitative metrics. Specifically, EEGDnet can achieve 18% and 11% improvements in correlation coefficients when removing ocular artifacts and muscle artifacts, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助义气绿柳采纳,获得10
2秒前
Lucas应助研友_n0Dmwn采纳,获得10
5秒前
爆米花应助蓦然回首采纳,获得20
7秒前
朝花夕拾完成签到 ,获得积分10
10秒前
11秒前
14秒前
15秒前
科研通AI2S应助愉快的御姐采纳,获得10
15秒前
lixundie完成签到,获得积分10
16秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
西瓜汽水完成签到,获得积分10
18秒前
艾欧比发布了新的文献求助10
19秒前
20秒前
24秒前
迪迦发布了新的文献求助10
26秒前
28秒前
雨寒发布了新的文献求助10
29秒前
30秒前
顺利山蝶发布了新的文献求助10
30秒前
清净163完成签到,获得积分10
35秒前
36秒前
37秒前
drgaoying发布了新的文献求助10
40秒前
44秒前
45秒前
ccc完成签到 ,获得积分10
46秒前
杭子轩完成签到,获得积分10
46秒前
ymr完成签到,获得积分10
47秒前
flemin完成签到,获得积分10
49秒前
杭子轩发布了新的文献求助10
50秒前
51秒前
慕青应助小面包狗采纳,获得10
51秒前
ljy阿完成签到 ,获得积分10
56秒前
cc完成签到 ,获得积分10
56秒前
搜集达人应助秀丽的咖啡采纳,获得10
56秒前
紫翼完成签到,获得积分10
1分钟前
Orange应助intestin采纳,获得10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229546
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8198010
捐赠科研通 2544488
什么是DOI,文献DOI怎么找? 1374437
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749