Reduction of therapeutic antibody self-association using yeast-display selections and machine learning

副镜 抗体 计算生物学 化学 互补决定区 免疫结合物 单克隆抗体 表位 生物 遗传学
作者
Emily K. Makowski,Hongwei Chen,Matthew Lambert,Eric M. Bennett,Nicole S. Eschmann,Yulei Zhang,Jennifer M. Zupancic,Alec A. Desai,Matthew D. Smith,Wenjia Lou,Amendra Fernando,Timothy Tully,Christopher Gallo,Laura Lin,Peter M. Tessier
出处
期刊:mAbs [Informa]
卷期号:14 (1) 被引量:20
标识
DOI:10.1080/19420862.2022.2146629
摘要

Self-association governs the viscosity and solubility of therapeutic antibodies in high-concentration formulations used for subcutaneous delivery, yet it is difficult to reliably identify candidates with low self-association during antibody discovery and early-stage optimization. Here, we report a high-throughput protein engineering method for rapidly identifying antibody candidates with both low self-association and high affinity. We find that conjugating quantum dots to IgGs that strongly self-associate (pH 7.4, PBS), such as lenzilumab and bococizumab, results in immunoconjugates that are highly sensitive for detecting other high self-association antibodies. Moreover, these conjugates can be used to rapidly enrich yeast-displayed bococizumab sub-libraries for variants with low levels of immunoconjugate binding. Deep sequencing and machine learning analysis of the enriched bococizumab libraries, along with similar library analysis for antibody affinity, enabled identification of extremely rare variants with co-optimized levels of low self-association and high affinity. This analysis revealed that co-optimizing bococizumab is difficult because most high-affinity variants possess positively charged variable domains and most low self-association variants possess negatively charged variable domains. Moreover, negatively charged mutations in the heavy chain CDR2 of bococizumab, adjacent to its paratope, were effective at reducing self-association without reducing affinity. Interestingly, most of the bococizumab variants with reduced self-association also displayed improved folding stability and reduced nonspecific binding, revealing that this approach may be particularly useful for identifying antibody candidates with attractive combinations of drug-like properties.Abbreviations: AC-SINS: affinity-capture self-interaction nanoparticle spectroscopy; CDR: complementarity-determining region; CS-SINS: charge-stabilized self-interaction nanoparticle spectroscopy; FACS: fluorescence-activated cell sorting; Fab: fragment antigen binding; Fv: fragment variable; IgG: immunoglobulin; QD: quantum dot; PBS: phosphate-buffered saline; VH: variable heavy; VL: variable light.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ajing完成签到,获得积分10
刚刚
无辜的电灯胆完成签到,获得积分10
刚刚
包容的映天完成签到,获得积分10
1秒前
1秒前
风趣的小鸽子完成签到,获得积分10
3秒前
4秒前
4秒前
风登楼完成签到,获得积分10
6秒前
文静的从菡完成签到,获得积分10
6秒前
上山石头完成签到,获得积分10
7秒前
7秒前
7秒前
糖糖完成签到,获得积分20
7秒前
7秒前
Xavier完成签到,获得积分10
7秒前
小兔叽发布了新的文献求助10
11秒前
12秒前
泠风来完成签到,获得积分10
12秒前
ponny2001发布了新的文献求助10
15秒前
洋洋完成签到,获得积分10
15秒前
SciGPT应助搞怪惜梦采纳,获得10
16秒前
16秒前
Ellen发布了新的文献求助10
19秒前
leening完成签到,获得积分10
21秒前
lalala发布了新的文献求助10
21秒前
夏青荷完成签到,获得积分10
22秒前
叨叨完成签到,获得积分10
23秒前
沐以完成签到,获得积分10
23秒前
重要的天磊完成签到,获得积分10
25秒前
思源应助鱼丸采纳,获得50
27秒前
谨慎的雨灵完成签到,获得积分10
29秒前
30秒前
丘比特应助科研小白采纳,获得30
34秒前
34秒前
角鸮完成签到,获得积分10
34秒前
35秒前
小马甲应助魔幻的访烟采纳,获得10
35秒前
37秒前
yummybacon完成签到,获得积分10
38秒前
小兔叽发布了新的文献求助10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461043
求助须知:如何正确求助?哪些是违规求助? 3054837
关于积分的说明 9045084
捐赠科研通 2744737
什么是DOI,文献DOI怎么找? 1505651
科研通“疑难数据库(出版商)”最低求助积分说明 695763
邀请新用户注册赠送积分活动 695173